Theory and Algorithms for the Understanding of Deep learning On Sequential data
Publications
Distillation of Weighted Automata from Recurrent Neural Networks using a Spectral Approach, Rémi Eyraud, Stéphane Ayache, Machine Learning Journal, 2021
Connecting Weighted Automata, Tensor Networks and Recurrent Neural Networks through Spectral Learning, Tianyu Li, Doina Precup and Guillaume Rabusseau. Machine Learning Journal, 2021
Explicabilité dans les réseaux récurrents par discrétisation, Hamed Benazha, Stéphane Ayache, Rémi Eyraud and Thierry Artières, Cap 2022
Sur les limites de la descente de gradient en précision finie pour l'apprentissage de réseaux récurrents, Rémi Eyraud and Volodimir Mitarchuk, Cap 2022
On the limit of gradient descent for Simple Recurrent Neural Networks with finite precision, Rémi Eyraud and Volodimir Mitarchuk, LearnAut 2022
Spectral Regularization: an Inductive Bias for Sequence Modeling, Kaiwen Hou and Guillaume Rabusseau, LearnAut 2022
Spectral Initialization of Recurrent Neural Networks: Proof of Concept, Maude Lizaire, Simon Verret and Guillaume Rabusseau. LearnAut 2022
Towards an AAK Theory Approach to Approximate Minimization in the Multi-Letter Case, Clara Lacroce, Prakash Panangaden and Guillaume Rabusseau, LearnAut 2022
Calibrate to Interpret, Gregory Scafarto, Nicolas Posocco, Antoine Bonnefoy, European Conference on Machine Learning, 2022