
Identification in the limit of substitutable

context-free languages

Alexander Clark1 and Rémi Eyraud2

1 Department of Computer Science,
Royal Holloway University of London

Egham, Surrey, TW20 0EX
UK

alexc@cs.rhul.ac.uk

http://www.cs.rhul.ac.uk/home/alexc/
2 EURISE

23, rue du Docteur Paul Michelon
42023 Saint-Étienne Cedex 2

France
remi.eyraud@univ-st-etienne.fr

http://eurise.univ-st-etienne.fr/~eyraud/

Abstract. This paper formalisms the idea of substitutability introduced
by Zellig Harris in the 1950s and makes it the basis for a learning algo-
rithm from positive data only for a subclass of context-free grammars.
We show that there is a polynomial characteristic set, and thus prove
polynomial identification in the limit of this class. We discuss the rela-
tionship of this class of languages to other common classes discussed in
grammatical inference. We also discuss modifications to the algorithm
that produces a reduction system rather than a context-free grammar,
that will be much more compact. We discuss the relationship to Angluin’s
notion of reversibility for regular languages.

1 Introduction

Current techniques for grammatical inference have for a long time been focussed
to a great extent on learnable subclasses of regular languages. For many applica-
tion domains though, there are structural dependencies in the data that are more
naturally modelled by context-free grammars of various types. One of the oldest
ideas for a grammatical inference algorithm, and one geared towards context-free
inference, is Harris’s use of substitutability [4, 7]. Though this has formed the
intuitive motivation for a number of grammatical inference algorithms before,
it has never been adequately formalized. In this paper we present an explicit
mathematical formalization of this idea of substitutability and use it to define a
subclass of context-free languages that we call the substitutable languages, that
can be learned according to the polynomial identification in the limit paradigm
[5]. These languages are not comparable to the very simple languages, but seem
better suited to be the basis for algorithms that can learn natural languages.

2

In this paper we use a polynomial variant of Gold’s identification in the limit
paradigm, working from positive data only. We hope in the future to be able to
extend this to a more practical PAC-learning result, but in the meantime work in
this paradigm allows some foundational issues to be addressed. The contribution
of the work presented in this paper lies in two main directions: first we capture
the essential language theoretic property that a certain class of algorithms must
rely on, and show that this criterion is sufficient to guarantee identification in
the limit.

The key to the Harris approach for learning a language L, is to look at pairs
of strings u and v and to see whether they occur in the same contexts; that is
to say, to look for pairs of strings of the form lur and lvr that are both in L.
This can be taken as evidence that there is a nonterminal symbol that generates
both strings. In the informal descriptions of this, there is an ambiguity between
two ideas. The first is that they should appear in all the same contexts; and the
second is that they should appear in some of the same contexts. We can write
the first criterion as follows: (we define our notation more formally in the next
section, but we hope the reader will bear with us for the moment)

∀l, r lur ∈ L if and only if lvr ∈ L (1)

The second, weaker, criterion is

∃l, r lur ∈ L and lvr ∈ L (2)

The problem is then that to draw conclusions about the structure of the
language, one needs the former; but all one can hope for by observation of given
data is the latter. In general, the class of context-free grammars will be unlearn-
able: certainly according to the Gold style approach we take in this paper since
it is a superfinite class. Therefore to obtain learnability results we must define
subclasses of the languages that sufficiently restrict the class so that learning can
take place. The restriction we consider here is that whenever two strings have
one context in common, then they have all contexts in common: Equation 2
implies Equation 1. We call these the substitutable languages.

Our main result is that this simple, but powerful constraint on languages –
and note that it is expressed in purely language theoretic terms – sufficiently
restricts the class of context-free languages to the extent that it can be learned
using a simple polynomial algorithm. In this case, we can learn according to
the IIL criterion, and the algorithm will be polynomial in the amount of data it
needs (the characteristic set) and in computation.

2 Definitions

We start by defining some standard notation.
An alphabet Σ is a finite nonempty set of symbols called letters. A string w

over Σ is a finite sequence w = a1a2 . . . an of letters. Let |w| denote the length of
w. In the following, letters will be indicated by a, b, c, . . ., strings by u, v, . . . , z,

3

and the empty string by λ. Let Σ∗ be the set of all strings, the free monoid
generated by Σ. By a language we mean any subset L ⊆ Σ∗. The set of all
substrings of a language L is denoted Sub(L) = {u ∈ Σ+ : ∃l, r, lur ∈ L} (notice
that the empty word does not belong to Sub(L)). We shall assume an order ≺
or � on Σ which we shall extend to Σ∗ in the normal way by saying that u ≺ v
if |u| < |v| or |u| = |v| and u is lexicographically before v.

Many classes of languages have been investigated in the literature. In general,
the definition of a class L relies on a class R of abstract machines, here called
representations, together with a function L from representations to languages,
that characterize all and only the languages of L: (1) ∀R ∈ R,L(R) ∈ L and
(2) ∀L ∈ L, ∃R ∈ R such that L(R) = L. Two representations R1 and R2 are
equivalent iff L(R1) = L(R2).

Definition 1 (grammar). A grammar is a quadruple G = 〈V, Σ, P, S〉 where
Σ is a finite alphabet of terminal symbols, V is a finite alphabet of variables or
non-terminals, P is a finite set of production rules, and S ∈ V is a start symbol.

If P ⊆ V × (Σ ∪ V)+ then the grammar is said to be context-free (CF), and
we will write the productions as T → w.

We will write uTv ⇒ uwv when T → w ∈ P .
∗
⇒ is the reflexive and transitive

closure of ⇒.
We denote by L(G) = {w ∈ Σ∗ : S

∗
⇒G w} the language defined by the

grammar. Since we do not allow rules with an empty right hand side this language
cannot contain λ.

Definition 2 (syntactic congruence).
We say that two words u and v are syntactically congruent w.r.t. a language

L, written u ≡L v, if and only if ∀l, r ∈ Σ∗ lur ∈ L iff lvr ∈ L.

We can think of this syntactic congruence as the strong notion of substi-
tutability. Note two things: first this is clearly an equivalence relation, and sec-
ondly, it is a congruence of the monoid Σ∗ i.e.

u ≡L v implies ∀l, r lur ≡L lvr

The syntactic monoid of the language L is just the quotient of Σ∗ by this relation.
It is a standard result that this will be finite if and only if L is regular.

Another way of looking at this relation is to define the set of contexts of a
string:

Definition 3. The set of contexts of a string u in a language L is written CL(u)
and defined as CL(u) = {(l, r)|lur ∈ L}.

Using this definition we can say that u ≡L v if and only if CL(u) = CL(v).
The weaker idea of substitutability that we will use is defined in the following

way.

Definition 4 (weak substitutability).
Given a language L, we say that two words u and v are weakly substitutable

w.r.t. L, written u
.
=L v, if there exist l, r ∈ Σ∗ such that lur ∈ L and lvr ∈ L.

4

Note that this is in general not a congruence or even transitive. Normally we
will have a finite sample S of the language L: clearly u

.
=S v implies u

.
=L v.

We now can define the class of languages that we are concerned with:

Definition 5. A language L is substitutable if and only if for every pair of
strings u, v, u

.
=L v implies u ≡L v.

In terms of contexts we can say that a language is substitutable, if whenever
the set of contexts of two strings have non-empty intersection, they are identical.
The substitutable context-free languages are just those languages that are both
substitutable and context-free.

2.1 Learning

We now define our learning criterion. This is identification in the limit from
positive text [6], with polynomial bounds on data and computation, but not on
errors of prediction [5].

A learning algorithm A for a class of representations R, is an algorithm that
computes a function from a finite sequence of strings s1, . . . , sn to R. We define a
presentation of a language L to be an infinite sequence of elements of L such that
every element of L occurs at least once. Given a presentation, we can consider the
sequence of hypotheses that the algorithm produces, writing Rn = A(s1, . . . sn)
for the nth such hypothesis.

The algorithm A is said to identify the class R in the limit if for every R ∈ R,
for every presentation of L(R), there is an N such that for all n > N , Rn = RN

and L(R) = L(RN).
We further require that the algorithm needs only polynomially bounded

amounts of data and computation. We use the slightly weaker notion defined
by de la Higuera [5].

Definition 6. A representation class R is identifiable in the limit from positive
data with polynomial time and data iff there exist two polynomials p(), q() and
an algorithm A such that

1. Given a positive sample S of size m A returns a representation R ∈ R in
time p(m)

2. For each representation R of size n there exists a characteristic set CS of
size less than q(n) such that if CS ⊆ S, A returns a representation R′ such
that L(R) = L(R′).

3 Algorithm

We now define an algorithm SGL (substitution graph learner), that will learn a
context-free grammar from a sample of positive strings of a language.

The primary data structure of our algorithm can be conceived of as a graph,
where each node of the graph corresponds to a substring of a string in the sample,

5

and where there is an arc between any two nodes corresponding to substrings
u,v if and only if u

.
=S v where S is the set of positive examples.

In the next section we will define a characteristic set of examples for a
context-free grammar, and show that whenever the context-free grammar is
substitutable, and the sample contains the characteristic set, then SGL will
produce a grammar weakly equivalent (ie. that generates the same language) to
the target.

Definition 7 (substitution graph).
Given a set of words S, we define the substitution graph SG(S) = (V, E) as

follow:
V = {u ∈ Σ+ : ∃l, r ∈ Σ∗, lur ∈ S}
E = {(u, v) ∈ Σ+ × Σ+ : u

.
=S v} = {(u, v) ∈ Σ+ × Σ+ : ∃l, r ∈ Σ∗, lur ∈

S ∧ lvr ∈ S}

This graph will consist of a number of components, in the usual graph the-
oretic sense. If the language is substitutable, then every member of the same
component will be syntactically congruent, and can thus be freely swapped with
each other without altering language membership. Of course in general, there
may be more than one component corresponding to the same congruence class,
since we are deriving the graph from a small finite sample.

First, note that since syntactic congruence is transitive, and we are interested
in substitutable languages, we can compute the transitive closure of the graph,
by adding any edges (u, w) when we have edges (u, v), (v, w). We will write ∼=S

for the transitive closure of
.
=S . If S is a subset of a subsitutable language L

then u ∼=S v implies u ≡L v.
We can write SG/ ∼=S for the set of components of the substitution graph

and [u]∼=S
for each element. We will normally omit the subscript where there is

no risk of confusion.

3.1 Constructing the grammar

Given the SG we now construct a grammar Ĝ = 〈Σ, V̂ , P̂ , Ŝ〉 .
We define the set of nonterminals to be the set of components of the substitu-

tion graph, V̂ = SG/ ∼=S . First note that there will be precisely one component
of the substitution graph that will contain all the strings in the sample S. This
is because they will all appear in the empty context (λ, λ). This component will
be Ŝ.

We now define the set of productions for the grammar. These consist of two
types. First for every letter in the alphabet, and we can assume without loss of
generality that they occur as substrings in the language, we have a production

[a] → a

Note that if we have two letters such that a
.
= b, then [a] = [b] and the same

nonterminal will have two productions rewriting it.

6

The second set of productions is defined for every substring of length greater
than 1. For every node in the substitution graph u, if |u| > 1, for every pair
of non-empty strings v, w such that u = vw add a production [u] → [v][w].
Again note that if the component has more than one node in it, then all of the
productions will have the same left hand side.

We can define the set of productions formally as:

P̂ = {[u] → [v][w]|u = vw, u ∈ V of SG, |v| > 0, |w| > 0} ∪ {[a] → a|a ∈ Σ}

To be explicit about the algorithm, we show it in Algorithm 1, rather than
relying on the characteristic set.

Algorithm 1: SGL algorithm

Data: A sequence of strings s1, s2 . . .

Result: A sequence of CFGs G1, G2 . . .

G = Grammar generating the empty language ;
while true do

read next string sn;
if sn 6∈ L(G) then

set SG to be the substitution graph generated from {s1, . . . sn};
set G to be the grammar generated from SG;

end

output G;

end

3.2 Examples

Example 1: Suppose the sample consists of the two strings S = {a, aa}. Sub(S) =
{a, aa}. It is clear that a

.
=S aa. Therefore there is only one component in the

substitution graph, associated with the nonterminal Ŝ. The grammar will thus
have productions [aa] → [a][a] which is Ŝ → ŜŜ and [a] → a which is Ŝ → a.
Thus the learned grammar will generate the language a+.

Example 2: Consider the language L = {ancbn|n ≥ 0}. Suppose we have a
large sample of strings from this language. The substitution graph will have
components Ci ⊂ {ancbn+i|n ≥ 0} for integer values of i, Ai = {ai} and Bi =
{bi}, for positive values of i, with Ŝ = C0 . The grammar generated from this
sample will then have rules of the form (for i ≥ 0)

Ci → CjBi−j

C−i → Ai−jCj

Ai+j → AiAj , A1 → a

Bi+j → BiBj , B1 → b

Thus, the set of nonterminals can be substantially larger than that of the original
grammar.

7

3.3 Polynomial time

We now show, rather crudely, that SGL runs in a time bounded by a polynomial
in the total length of the sample. Suppose the sample is S = {w1, . . . , wn}. We
can define N =

∑
|wi|, and L = max |wi|. Clearly L ≤ N , and n ≤ N . The

total number of substrings, and thus nodes in the graph, is less than N2. The
cost of computing, for a given pair of strings u,v, all of the substrings u′, v′

such that u′ .
=S v′ can be done in time less than L2, and thus assuming a

constant time map from substrings to nodes in the graph, we can compute all
the edges in the graph in time less than L2n2. Computing the transitive closure
of

.
= or equivalently identifying the components of the substitution graph, can

be done in time linear in the sum of the number of nodes and edges which are
both polynomially bounded. When constructing the grammar, the number of
rules defined by each component/nonterminal is clearly bounded by the number
of different ways of splitting the strings in the component, and thus the total
number of rules must be bounded by LN2, and each rule can be constructed in
constant time.

There are much more efficient algorithms that could be used: hashing from
contexts to components and using a union-find algorithm to identify the com-
ponents, for example.

4 Proof

Theorem 1. SGL polynomially identifies in the limit the class of substitutable
(context-free) languages.

To prove this theorem, we first need to define a characteristic set, that is to
say a subset of a target language L∗ which will ensure the desired algorithm will
output a grammar G such that L(G) = L∗.

Construction of the characteristic sample let G∗ = 〈V, Σ, P, S〉 be a target
grammar. We are going to define a set CS of words of L∗, such that the algorithm
SGL will identify L∗ from any superset of CS.

We define w(α) ∈ Σ∗ to be the smallest word, according to ≺, generated by
α ∈ (Σ ∪ V)+. For each nonterminal N ∈ V define c(N) to be the smallest pair
of terminal strings (l, r) (extending ≺ from Σ∗ to Σ∗ × Σ∗, in some way), such

that S
∗
⇒ lNr.

We can now define the characteristic set CS = {lwr|(N → α) ∈ P, (l, r) =
c(N), w = w(α)}. The cardinality of this set is at most |P | which is clearly
polynomially bounded.

Convergence We now must show that for any substitutable context-free gram-
mar G, if CS(G) ⊆ S ⊆ L(G) then if Ĝ is the output SGL produces on the
sample S, L(Ĝ) = L(G). We will start by showing that the grammar derived
from the original substitution graph will define the right grammar.

To do this we will show first the following lemma:

8

Lemma 1. L(G) ⊆ L(Ĝ).

Proof. By the definition of the characteristic set, for each production N → α
in the original grammar, there is a substring w(N) and a substring w(α) in the
same component of the substitution graph. If α = a1 . . . an where ai ∈ Σ ∪ V ,
then w(α) = w(a1) . . . w(an)1. Therefore by the definition of P̂ , we will have a to-
tal of n−1 productions, one of the form [w(α)] → [w(a1)][w(a2)w(an)] and
n − 2 of the form [w(ai) . . . w(an)] → [w(ai)][w(ai+1) . . . w(an)]. These produc-

tions suffice to show that [w(N)]
∗
⇒

Ĝ
[w(a1)] . . . [w(an)]2. Given the definition of

the start symbols, and the definition of the non-terminal symbols of the form [u]

where u ∈ Σ (i.e. the pre-terminals), this suffices to show that if S
∗
⇒G u then

[w(S)]
∗
⇒

Ĝ
u. Intuitively this is because by the construction of the characteristic

set, the set of productions in the hypothesis is going to be a superset of the
set of productions in the target, and thus by an induction on the length of the
derivation, the defined language will be a superset of the target language. QED.

Next we show that the grammar does not define a language that is too
large. Recall that w(α) for some sequence of non terminals and terminals is the

smallest (w.r.t. ≺) string v such that α
∗
⇒ v. The basic lemma here is that

derivation with respect to Ĝ maintains syntactic congruence. Note first that by
the construction of the grammar: [u]

∗
⇒

Ĝ
u.

Lemma 2. For all v ∈ Σ∗, for all u ∈ Sub(S), [u]
∗
⇒

Ĝ
v implies u ≡L v

Proof. By induction on the maximum length of both derivations k. Base
step: k = 1. This means the derivation must be a single production of the form
[u] → v. This will only be the case if |v| = 1 and v is in the same component as
u; therefore u ≡L v.

Inductive step: suppose this is true for all derivations of length less than k.
Suppose we have a derivation of length k > 1. Suppose we have [u] ⇒ [v][w]

∗
⇒

Ĝ

x. There must be strings l, r such that x = lr and [v]
∗
⇒

Ĝ
l and [w]

∗
⇒

Ĝ
r

with derivations of length less than k. Therefore by the inductive hypothesis,
v ≡L l and w ≡L r. Since we have a production [u] → [v][w] in P̂ , there must
be strings v′, w′ such that v′w′ is a string in the same component as u, and
v′ ≡L v and u′ ≡L u and u ≡L v′w′. Since ≡L is a monoid congruence, we have
u ≡L v′w′ ≡L vw′ ≡L vw ≡L lw ≡L lr = x. QED

This lemma suffices to establish that L(Ĝ) ⊆ L(G), since if v is in the sample

S, then if Ŝ = [v]
∗
⇒

Ĝ
u, then u ≡L v implies u ∈ L. Therefore L(Ĝ) = L(G),

and Theorem 1 follows immediately.

1 This is clear by definition of the partial order ≺ above.
2 This is just the right binarization of the production. We have not made the assump-

tion that the grammar is in Chomsky Normal Form which would remove the need
for this step in the proof.

9

5 Reduction system

As described here the algorithm is not practical, since the number of nontermi-
nals will often become very large. There are a number of algorithms for reducing
the number of nonterminals. Clearly one can recursively remove all nonterminals
that only have one production by replacing the nonterminal on the left hand side
of the production with the right hand side, wherever it occurs. Secondly, one can
remove nonterminals, one by one, and test whether the grammar continues to
accept all of the sample, and thus arrive at a minimal CFG.

In this section we describe a variant algorithm that is efficient and practical
for large data sets, but that produces a reduction system, rather than a grammar.

The key point here is to reduce the substitution graph, by removing strings
that are potentially redundant. In particular if we have one component that con-
tains the strings u and v, where u ≺ v and another that contains the strings lur
and lvr, we can reduce the graph by removing the string lvr. This is equivalent
to reducing the reduction system associated with the graph.

5.1 Definitions

We will briefly describe semi-Thue systems or reduction systems [3].

Definition 8 (Reduction system).
A reduction system T , over an alphabet Σ is a finite set of pairs of strings

T ⊂ Σ∗ × Σ∗, where each pair (u, v) is normally written u `T v, is called a
reduction rule and satisfies v ≺ u. 3

By extension, we will denote lur ` lvr when u ` v ∈ T . `∗ is the reflexive
and transitive closure of `.

Definition 9 (Confluent and weakly confluent reduction system).

– A reduction system T is confluent if and only if for all w, w1, w2 such that
w ` w1 and w ` w2, there exists e such that w1 ` e and w2 ` e.

– It is weakly confluent on a set S if and only if for all w, w1, w2 ∈ S such
that w ` w1 and w ` w2, there exists e ∈ S such that w1 `∗ e and w2 `∗ e.

Finally a reduction system is Noetherian if there is no infinite sequence of
reductions. This defines a congruence relation where u and v are congruent if and
only if they can be reduced to the same element. Being confluent and Noetherian
means that there is a simple algorithm to determine this congruence: each string
belong to only one congruence class. If we have the strict requirement that the
reductions must be length reducing (|v| < |u|), then the maximum number of
reductions is the length of the string you start with. Since we have a looser
definition(v ≺ u), this number can be exponential.

Given a reduction system one can define a language as the union of finitely
many congruence classes. Thus given a set of irreducible strings A, and a reduc-
tion system T , we can define a language L(T, A) = {v : ∃a ∈ A∧ v `∗

T a}. These

3 This differs slightly from the standard definition which requires |v| < |u|.

10

are the congruential languages. In some cases, this is a more natural way of
defining the structure of a language than systems from the traditional Chomsky
hierarchy.

For example consider the reduction system T = {(aca, c), (bcb, c)}, and the
axiom c (i.e. we are looking at the congruence class of c). The language defined
by L(T, {c}) is exactly the palindrome language over a, b with center marker c.

5.2 Reduction of a substitution graph.

Given a substitution graph SG = 〈V, E〉, we say that SG reduces to SG′ =
〈V ′, E′〉 if and only if there exists (u, v) ∈ E : v ≺ u, and (l, r), |l| + |r| > 0,
such that lur ∈ V , V ′ = (V \ {lur}) ∪ {lvr}, E′ = {(x, y) ∈ V ′ × V ′ : (x, y) ∈
E ∨ ((lur, y) ∈ E ∧ x = lvr)}.

We say that a substitution graph SG is irreducible if there exists no other
substitution graph SG′ such that SG reduces to SG′.

Given this reduced graph, we define a reduction system directly from the
graph.

In this case we will define the set of reductions to be exactly the set of all
pairs v ` u , where u ≺ v and u, v are nodes in the same component of the
substitution graph. We can also limit u to be the unique least node (w.r.t. ≺)
in each component.

Assuming that we have a set of examples generated from a substitutable CFG
that contains the characteristic set, it is easy to prove the following lemmas.

Lemma 3. If N ∈ V and N
∗
⇒ u for u ∈ Σ∗, then u `∗ w(N).

Proof. Suppose N = α0 ⇒ α1 ⇒ · · · ⇒ αn = u is a derivation of u. Map
this to a sequence (w(N), w(α1), . . . , w(αn), u) of strings from Σ∗. Consider a
single step αi = lMr and αi+1 = lβr and there is a production M → β in
P . w(αi) = w(l)w(M)w(r) and w(αi+1) = w(l)w(β)w(r) Therefore w(αi) `∗

T

w(αi+1). QED.

Lemma 4. If v ` u then v ∈ L iff u ∈ L

Proof. v ` u implies ∃(x, y) ∈ P and l, r ∈ Σ∗ such that v = lxr and u = lyr.
x

.
=S y implies x

.
=L y implies x ≡L y implies lxr ∈ L iff lyr ∈ L. QED.

The reduction system will be weakly confluent on L, and it is Noetherian,
since the number of strings smaller (w.r.t. ≺) than a given string is clearly
finite. Unfortunately in general we will not be able to compute an irreducible
string for any given word u in a polynomial (in the size of u) number of reduc-
tions. Thus though the reduction system itself may be much smaller, in some
cases the “parsing” algorithm, determining whether a word is in the language,
may be exponential. Subject to this caveat, we can define an efficient, small re-
duction system that represents the same language, namely the set of all strings
that reduces to the least string w(S) (w.r.t ≺) in the language.

11

6 Substitutable languages

We now give some examples of substitutable CFLs, as well as some simple CFLs
that are not substitutable, and discuss the relationship of this class of languages
to other standard classes. This is without a doubt a restricted class of languages
but contains some interesting examples. They are not closed under any standard
operation except reversal.

Since we are learning under a Gold style paradigm, we cannot hope to learn
all finite languages [6]. Indeed, the more complex the languages we hope to learn,
the smaller the set of finite languages we will we able to learn.

6.1 Examples

– Σ∗ is substitutable
– Any language consisting of only one string is substitutable.
– The finite language {a, aa} is not substitutable. The algorithm presented

here would return the hypothesis {an|n > 0}
– {an|n > 0} is substitutable.
– {anbn|n > 0} is not substitutable. This is because a

.
= aab, but they are

clearly not syntactically congruent.
– {ancbn|n > 0} is substitutable. Here the addition of a center marker removes

the problem.
– {wcwR|w ∈ (a, b)∗} (the palindrome with center marker) is substitutable.
– Strictly deterministic regular languages [13] are substitutable. Since the au-

tomaton is forward and backwards deterministic, and any given string can
only be generated by a unique sequence of states, we can see easily that if
u

.
= v then the sequence of states that generates u must start and stop in

exactly the same state that v starts and stops in.

Recall that very simple grammars [14] consist of CFGs in Greibach normal
form such that no terminal symbol is used in more than one production. Some
very simple grammars are not substitutable: an example is the grammar with
productions S → bN, S → aNP, N → xM, N → n, P → rMP, P → p, M → m.
This generates the language bn, bxm, anp, axmp, anrmp, . . . We can see that
x

.
= nr but it is not the case that x ≡ nr, since bxm is in the language but bnrm

is not. Nonetheless we note that the three grammars in [14] Example 2 are all
substitutable languages.

We also note the relationship to NTS grammars[11]; which can be seen to be

relevant in the next section. NTS grammars have the property that if N
∗
⇒ v

and M
∗
⇒ uvw then M

∗
⇒ uNw. We conjecture that all substitutable languages

are NTS languages.

6.2 Relation to other language classes

Substitutable context-free languages are properly included within the class of
congruential languages [3]. They are incomparable with the classes of finite lan-
guages, regular languages, and very simple languages. It properly includes the
class of strictly deterministic regular languages.

12

7 Discussion

This work is related to two other strands of work. First work that proves polyno-
mial IIL of other subclasses of context-free grammars. In [14] , Yokomori shows
that the class of very simple languages can be polynomially identified in the
limit. Unfortunately the complexity is N |Σ|+1 and the alphabet size is equal
to the number of productions in a very simple grammar, so this algorithm is
not practical for large scale problems. Secondly, we can relate it to the work of
Adriaans [1], who uses a similar heuristic to identify languages. Finally, we can
mention the similar work of [12] who shows an identification in the limit result of
a class of grammars called “left-aligned R grammars”. This work defines a rather
complicated family of grammars, and shows how constituents can be identified.
We also note [8] who show a learnable subclass of CFGs.

We can compare substitutability with reversibility [2, 9]. Recall that a lan-
guage is reversible if whenever uw and vw are in the language then ux is in
the language if and only if vx is in the language. Thus reversibility is the exact
analogue of substitutability for regular languages. Note that reversibility is a
weaker criterion than substitutability. Substitutability implies reversibility, but
not vice versa, as can be seen from the language {ab, bb} which is reversible but
not substitutable.

We can also compare the substitutability to µ-distinguishability for inference
of regular languages [10]. Ron uses a measure of similarity of residual languages,
rather than of contexts as we use here. Considered in this way, our measure is
very crude, and brittle – contexts are equal if they have non empty intersection.
Nonetheless the techniques of Ron et al., suggest a way that this technique could
be extended to a PAC-learning result, using a bound on a statistical property of
the distribution. There are some technical problems to be overcome, since the
number of syntactic congruence classes will be infinite for non regular languages,
and thus the distinguishability will not in general be bounded from below. A
more serious problem is that the worst case sample complexity, if the data is
drawn randomly, is clearly exponential, since the chance of getting two strings
that differ only in a single point is in general exponential in the derivational
entropy of the grammar.

Algorithms for learning regular languages focus on identifying the states of
a deterministic automaton. When trying to move to learning context-free lan-
guages, the obvious way is to try to identify configurations (i.e. pairs of states
and strings of stack symbols) of a deterministic push down automaton. A prob-
lem here is that the structure of this set depends on the representation, the
automaton. One way of viewing the work presented in this paper, is to say that
a better way is to try to identify the elements of the syntactic monoid. This
monoid represents in the barest form the combinatorial structure of the lan-
guage. From a learnability point of view this is interesting because it is purely
syntactic – it is not semantic as it does not depend on the representation of
the language but only on the language itself. Since we are interested in algo-
rithms that learn from unstructured data – strings from the language that are
not annotated with structural information – this seems a more natural approach.

13

Importantly, our algorithm does not rely on identifying constituents: that is to
say on identifying which substrings have been generated by the non terminals
of the target grammar. This has up to now been considered the central problem
in context-free grammatical inference, though it is in some sense an ill-posed
problem since there may be many different grammars with different constituent
structure that are nonetheless weakly equivalent, that is to say, define the same
language.

One of the weaknesses in the work is the fact that we do not yet have a
grammatical characterisation of substitutability, nor an algorithm for determin-
ing whether a grammar defines a substitutable language. It is clear from standard
results in the field that this property will be undecidable in general, but it might
be possible to decide it for NTS grammars [11].

Looking at our approach more generally, it is based on identifying syntacti-
cally congruent substrings. Substitutable languages have a property that allows
a trivial procedure for determining when two substrings are congruent, but is
is easy to think of much more robust methods of determining this that rely on
more complex properties of the context distributions. Thus in principle we can
use any property of the sample from the context distribution: average length,
substring counts, marginal distributions at certain offsets and so on.

To conclude, we have shown how a simple formalization of Harris’s substi-
tutability criterion can be used to polynomially learn an interesting subclass of
context-free languages.

Acknowledgements

This work has benefitted from the support of the EU funded PASCAL Network of
Excellence on Pattern Analysis, Statistical Modelling and Computational Learn-
ing. We would like to thank Colin de la Higuera, Jean-Christophe Janodet and
Brad Starkie for helpful comments and discussions.

References

1. P. Adriaans, M. Trautwein, and M. Vervoort. Towards high speed grammar in-
duction on large text corpora. In SOFSEM 2000, pages 173–186. Springer Verlag,
2000.

2. D. Angluin. Inference of reversible languages. Communications of the ACM,
29:741–765, 1982.

3. R. Book and F. Otto. String rewriting systems. Springer Verlag, 1993.
4. N. Chomsky. Systems of syntactic analysis. Journal of Symbolic Logic, 18(3), 1953.
5. C. de la Higuera. Characteristic sets for polynomial grammatical inference. Ma-

chine Learning, 27(2):125–138, 1997.
6. E. M. Gold. Language indentification in the limit. Information and Control,

10(5):447 – 474, 1967.
7. Z. Harris. Distributional structure. Word, 10(2-3):146–62, 1954.
8. J. A. Laxminarayana and G. Nagaraja. Inference of a subclass of context free

grammars using positive samples. In Proceedings of the Workshop on Learning
Context-Free Grammars at ECML/PKDD 2003, 2003.

14

9. E. Mäkinen. On inferring zero-reversible languages. Technical Report A-1998-7,
University of Tampere, 1998.

10. D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic
probabilistic finite automata. Journal of Computer and System Sciences (JCSS),
56(2):133–152, 1998.

11. G. Senizergues. The equivalence and inclusion problems for NTS languages. J.
Comput. Syst. Sci., 31(3):303–331, 1985.

12. B. Starkie. Identifying Languages in the Limit using Alignment Based Learning.
PhD thesis, University of Newcastle, Australia, 2004.

13. T. Yokomori. On polynomial-time learnability in the limit of strictly deterministic
automata. Machine Learning, 19(2):153–179, 1995.

14. T. Yokomori. Polynomial-time identification of very simple grammars from positive
data. Theoretical Computer Science, 298(1):179–206, 2003.

