
Université d’Aix-Marseille

Ecole Doctorale de Mathématiques et Informatique

Habilitation à Diriger des Recherches

Spécialité : Informatique

par

Rémi Eyraud

Grammatical Inference:
Learning Computational Models from

Various Types of Structured Data
Préparée au

Laboratoire d’Informatique et Systèmes

Equipe Qarma

soutenue le 16 juillet 2019

Jury:

Dr. Cécile Capponi Aix-Marseille University Member
Pr. François Denis Aix-Marseille University President
Pr. Makoto Kanasawa Hosei University Member
Pr. Jacques Nicolas INRIA-IRISA Reviewer
Pr. Marc Sebban University of Saint-Etienne Reviewer
Pr. Marc Tommasi University of Lille Reviewer

Acknowledgments

Thanks everyone :-)

Contents

I Introductions 1

1 On Grammatical Inference and Machine Learning 3
1.1 Machine learning and human learning 3
1.2 What is called grammatical inference . 4
1.3 Approximation versus Identification . 5
1.4 Overview of this document . 6
Bibliography . 7

2 On the Formalization of Learning 11
2.1 Introduction . 12

2.1.1 On learning paradigms . 12
2.1.2 Preliminary definitions . 13

2.2 PAC learning and other learning paradigms 14
2.2.1 PAC paradigm . 14
2.2.2 Active Learning . 16
2.2.3 Other learning paradigms . 17

2.3 The limits of Gold’s paradigm . 18
2.3.1 The importance of efficiency in learning 18
2.3.2 Identification in the limit . 18
2.3.3 Polynomial time . 20
2.3.4 Identification of a language and the size of a target representation 21

2.4 First refinements . 22
2.4.1 Mind changes and implicit errors of prediction 22
2.4.2 Characteristic Sample . 24

2.5 Recent refinements . 27
2.5.1 Structurally complete set . 27
2.5.2 Thickness . 29
2.5.3 Comparison of the two refinements 30

2.6 Conclusion . 31
Bibliography . 32

II Distributional Learning 37

3 On Learning from Strings 39
3.1 Introduction . 40

iv Contents

3.2 Basic Definitions and Notations . 43
3.3 Contextual Binary Feature Grammars (CBFG) 44

3.3.1 Preliminary Results about Context Inclusion 44
3.3.2 Contextual Binary Feature Grammars 46
3.3.3 A Parsing Example . 48

3.4 Learning Algorithm . 50
3.4.1 Building CBFGs from Sets of Strings and Contexts 50
3.4.2 Monotonicity Lemmas . 53
3.4.3 Fiducial Feature Sets and Finite Context Property 54
3.4.4 Kernel and Finite Kernel Property 56
3.4.5 Learning Algorithm . 58
3.4.6 Identification in the limit result 60
3.4.7 Examples . 62

3.5 Practical Behavior of the Algorithm . 64
3.5.1 Generation of Target Context-free Grammars 64
3.5.2 Experimental Setup . 65
3.5.3 Results and Discussion . 66

3.6 Expressiveness of CBFG . 68
3.6.1 Exact CBFGs and the Chomsky Hierarchy 68
3.6.2 Inexact CBFGs . 74

3.7 Discussion and Conclusion . 75
3.7.1 Grammatical Inference . 76
3.7.2 Linguistics . 77
3.7.3 Following works . 77

Bibliography . 79

4 On Learning from Graphs 85
4.1 Introduction . 86
4.2 On Plane Graphs . 89

4.2.1 Concatenation . 92
4.2.2 Plane isomorphism . 93

4.3 The Grammars for Plane Graph Languages 95
4.3.1 Applying a lexical rule . 98
4.3.2 Applying a production . 99
4.3.3 Representable languages . 100
4.3.4 Plane Graph Grammars and Related Formalism’s 101

4.4 Properties of Plane Graph Grammars . 103
4.4.1 Context-freeness property . 103
4.4.2 A Parsing Algorithm . 104

4.5 Learning substitutable plane graph languages 106

Contents v

4.5.1 Substitutable plane graph languages 106
4.5.2 The Learner . 109
4.5.3 Learning result . 110

4.6 Discussion . 115
Bibliography . 115

III Functional Learning 121

5 On Learning with a Known Domain 123
5.1 Introduction . 124
5.2 Preliminaries . 125
5.3 Representations of Subsequential Functions 126

5.3.1 Traditional Subsequential Transducers 126
5.3.2 Delimited Subsequential Transducers 127
5.3.3 Onward Transducers . 129

5.4 Deriving an Onward DSFST . 130
5.5 Learning Paradigm . 131
5.6 Target Classes . 132
5.7 Learning Algorithm . 132
5.8 Learning Result . 134
5.9 Demonstrations . 136

5.9.1 Input Strictly Local Functions . 136
5.9.2 Non-ISL Phonological Processes 137
5.9.3 Morphological Parsing . 138

5.10 Conclusion . 138
Bibliography . 139

6 On Learning with Locality Constraints 141
6.1 Introduction . 142
6.2 Preliminaries . 143
6.3 Input and Output Strictly Local functions 144

6.3.1 Input Strictly Local functions . 145
6.3.2 Output Strictly Local functions 146

6.4 Input-Output Strictly Local functions 148
6.4.1 Definition . 148
6.4.2 Automata Characterization . 148
6.4.3 Relations among classes . 150

6.5 Learning IOSL functions . 152
6.5.1 The Learning Algorithm . 152
6.5.2 Theoretical Results . 152

vi Contents

6.6 Conclusion and future works . 157
Bibliography . 158

IV Conclusion 161

7 Conclusion 163
7.1 On congruences . 163
7.2 On representation hierarchies . 164
7.3 To be exhaustive . 165
7.4 Some personal remarks . 166
Bibliography . 167

V Annexes 169

Curriculum Vitae 171

Mentoring 181

Brief Index 183

Part I

Introductions

Chapter 1

On Grammatical Inference and
Machine Learning

Contents
1.1 Machine learning and human learning 3
1.2 What is called grammatical inference 4
1.3 Approximation versus Identification 5
1.4 Overview of this document . 6
Bibliography . 7

In this chapter, I briefly describe the context of the work presented in this manuscript.
I start by interrogating the notion of learning (Section 1.1), in particular the links
between machine learning and human learning. I then introduce the field at the core
of this document: grammatical inference (Section 1.2). Section 1.3 discusses the notion
of identification and its importance in contrast with approximation. Finally, I give an
overview of the different works regrouped in this document in Section 1.4.

1.1 Machine learning and human learning

The question of the comparison of machine and human intelligence is a topical issue:
generalist press, for instance, is nowadays full of articles wondering when machines will
outperform humans, some even pretending it already happened.

It is important to notice that most of the examples given to support such a claim
come from machine learning: a particular software being better at detecting tumors than
clinicians [Esteva et al., 2017], an "artificial intelligence" beating the world champion
of the go game [Silver et al., 2016], a self-driving car having less accident [Sparrow and
Howard, 2017], etc.

However, these articles usually keep quiet the inherent difference between humans
and machines: they do not share the same model of computation. For instance, the
success of tumor detection software is due to the capability of machines to access more
medical data in few hours that a radiologist or a dermatologist can do in his lifetime.
This is just a recent example of the distinction between cognitive science and cybernetic.

4 Chapter 1. On Grammatical Inference and Machine Learning

Once this distinction is clearly established, one can follow three different paths:

1. Use machines unique abilities to provide new tools to tackle some tasks,

2. Use machines for comparative purpose in order to better understand the way the
human brain works,

3. Use the machine to model the computation of human brain.

Even if some terms, like artificial neural networks [McCulloch and Pitts, 1943],
could create confusion, statistical machine learning usually relies on the first approach.
Indeed, all recent successes depend of the particularities of computers and have few to
do with how humans handle a particular task. For instance, the three examples given
above all succeed thanks to the machines’ capacity of dealing with huge data sets.

The second approach is a more rarely followed path. An example of that kind of work
is the recent rebuttal of the ’poverty of stimulus’ [Clark and Lappin, 2011]. This idea
was introduced during the Seventies and was used to support the claim that the ability
of young children to handle their native language is innate. It asserts that the difficulty
of learning a natural language cannot be overcome given the relatively limited data
available in the linguistic environment of a toddler. In particular, several grammatical
structures have been shown to be absent of the linguistic experience of an infant, though
they are quickly recognized as correct by young children. However, we showed that a
simple algorithmic idea allows the learning of these grammatical structures despite their
absence in the learning sample [Clark and Eyraud, 2007]. By proving false a previously
admitted claim, this work in computer science participate to the debate on how human
learn.

Few has been done concerning the third approach: it is a scientific topical issue, at
the interface of many fields, from cognitive science to neurology, including computer
science and mathematics. Important investments have been secured recently [Amunts
et al., 2016] but it is just the beginning of what is likely to be a long term research
path.

1.2 What is called grammatical inference

Grammatical Inference (GI) is the field that studies the learnability of computational
models [de la Higuera, 2010]. The wide varieties of domains that are interested by this
thematic implies that it is known under many different names:

• control theorists refer to it as system identification [Ljung, 1998],

• machine learners would rather use grammar learning or grammar induc-
tion [Głowacka et al., 2011] ,

1.3. Approximation versus Identification 5

• security researchers are familiar with the term protocol state fuzzing [De Ruiter
and Poll, 2015],

• model checkers use model learning [Vaandrager, 2017]

• computational linguists prefer grammar induction [Bisk and Hockenmaier, 2015]

• some papers use the term regular inference [Berg et al., 2005] or regular extrapo-
lation [Hagerer et al., 2002] to denote part of the field

• some theoretical works are regroup under the term active learning [Angluin, 1987]

Obviously, these terms regrouped at least partially different contexts: the applications
are not the same, the type of data considered may vary, even the global goals can
be of different nature. However, they all share the same core motivation: to build a
grammatical model from some kind of sequential/structured data.

We consider the term Grammatical Inference as the one encompassing all the others,
and will thus use it in the course of this document.

1.3 Approximation versus Identification

In Statistical Machine Learning (SML) the central goal is to be able to infer a good
approximation of the eventual function that generates the data. In other words, we
supposed there exists a probabilistic target function that perfectly explains the data
and we try to learn a (simpler) function that is close enough to this target. This is
the core of most theoretical works in SML: it is explicit in the bias-variance dilemma,
we found it behind the PAC learning paradigm and the studies of generalization error
bounds, etc. Even when theory is not involved, we focus on showing how good the
learned model is by applying protocols like cross-validation to evaluate the quality of
the approximation.

However, this widely accepted goal suffers drawbacks that have rarely been discussed
until recently. It is the tremendous successes of machine learning applications that
revealed them. To take a practical example, imagine you have developed a software
using a ML algorithm that is able to automatically drive a car. You have proven, or
convincingly evaluated, that the learned model is (very) good: your accuracy is 99%
(or 99.9%, or even 99.99999%). The exact percentage does not matter, the important
point is that your model is an approximation. This rate does not mean that in front
of a given context (datum), the model will fail 1% of the time. It states that, if this
given data is part of the 1% on which the model does not work, it will fail each time it
encountered it. What the result says is that this data is (very) unlikely.

Concretely, if the model of the self driving cars fails for instance on a rare combina-
tion of bad weather and a particular type of asphalt, all cars encountering this condition

6 Chapter 1. On Grammatical Inference and Machine Learning

will crash. If this happens on a summer Saturday on the A7 highway in Valley of Rhone,
or on the Interstate 95 in Eastern USA the day before Thanksgiving, the consequences
would be dramatic.

This topical issue is of great importance since it can dampen the enthusiasm of the
industry toward ML by, for instance, slowing down the commercialization of self-driving
cars.

There exist few known ways to tackle the problem. A possibility is to characterize
the data on which the model fails and to use another one when such data has to be
faced. However this is difficult, in particular for models for which few theoretical results
exist, like deep artificial neural networks.

A more promising path is to change the goal of learning from the one of approxima-
tion to the one of identification. Historically, the idea of exactly identifying the target
function has been mined since the early times of machine learning: the work of E. M.
Gold in the sixties is a good witness [Gold, 1967]. This approach has been followed
mainly by researchers from the theoretical computer science community: its targeted
models are the one at the core of this science, from finite state automata (FSA) to
Chomsky grammars, including transducers and string rewriting systems, among others.

The (mostly practical) successes of statistical machine learning, headed by re-
searchers whose background is thus in statistics, recently eclipsed the works on iden-
tification. For instance, very few papers on identification, to not say none, have been
published in major international machine learning conferences the past ten years. A
majority of today machine learners enjoy advanced knowledge in statistics but know
few about computer science models.

However, despite the founding and publishing difficulties of these works, identifica-
tion results are still obtained and important breakthrough have been obtained during
the past decade. Indeed, complex classes of models have been proven identifiable under
various framework [Clark et al., 2010, Freivalds and Zeugmann, 2014, Yoshinaka and
Clark, 2010, Shibata and Yoshinaka, 2016, Balle and Mohri, 2018], refinements of the
learning paradigms have been studied to make them more practical [Yoshinaka, 2008,
Eyraud et al., 2016] (see also Chapter 2), and efficient implementations of major algo-
rithms have been made available [Akram et al., 2010, Isberner et al., 2015, Arrivault
et al., 2017]. All of these allowed state of the art results, for instance in software en-
gineering [Meijer and van de Pol, 2018], security [van der Lee and Verwer, 2018], and
natural language processing [Quattoni et al., 2017].

1.4 Overview of this document

This document regroups most of the research in grammatical inference, in particular
in the context of identification, I had the chance to conduct during the last ten years.
These works have always been collaborative, as it is often the case for prospective

Bibliography 7

scientific research: I detail at the beginning of each chapter the context of the work and
describe the collaboration that allows its achievements.

The document is structured as follow:

• This introductory part contains a second chapter (Chapter 2) where the formal-
ization of the notion of identification is discussed.

• The second part deals with distributional learning, a recently explored path in
grammatical inference, and is composed of two chapters: the first one (Chapter 3)
focuses on learning from sequences while the second one (Chapter 4) tackles the
challenge of learning from graphs.

• The third part concentrates on learning string to string functions. Two paths
have been explored: when the domain is known (Chapter 5) and when additional
locality constraints are available (Chapter 6). These two works are motivated by
linguistic considerations.

• A general conclusion completes the scientific part of this document while annexes
provide a curriculum vitae and additional information.

Bibliography

H. Ibne Akram, C. de la Higuera, H. Xiao, and C. Eckert. Grammatical inference
algorithms in MATLAB. In Proc. of the International Conference in Grammatical
Inference, pages 262–266, 2010. 6

K. Amunts, C. Ebell, J. Muller, M. Telefont, A. Knoll, and T. Lippert. The human
brain project: Creating a european research infrastructure to decode the human brain.
Neuron, 92(3):574 – 581, 2016. 4

D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1987. 5

D. Arrivault, D. Benielli, F. Denis, and R. Eyraud. Scikit-SpLearn: a toolbox for the
spectral learning of weighted automata compatible with scikit-learn. In Conférence
francophone en Apprentissage, 2017. 6

B. Balle and M. Mohri. Generalization bounds for learning weighted automata. Theo-
retical Computer Science, 716:89–106, 2018. 6

T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, and B. Steffen. On the cor-
respondence between conformance testing and regular inference. In Proc. of the Joint
European Conference on Theory and Practice of Software Conference on Fundamental
Approaches to Software Engineering, pages 175–189, 2005. 5

8 Bibliography

Y. Bisk and J. Hockenmaier. Probing the linguistic strengths and limitations of un-
supervised grammar induction. In Proc. of the Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing, pages 1395–1404, 2015. 5

A. Clark and R. Eyraud. Polynomial identification in the limit of substitutable context-
free languages. Journal of Machine Learning Research, 8:1725–1745, 2007. 4

A. Clark and S. Lappin. Linguistic Nativism and the Poverty of the Stimulus. Wiley-
Blackwell, Malden, MA, 2011. URL http://eu.wiley.com/WileyCDA/WileyTitle/
productCd-1405187840.html. 4

Alexander Clark, Rémi Eyraud, and Amaury Habrard. Using contextual representations
to efficiently learn context-free languages. Journal of Machine Learning Research, 11:
2707–2744, 2010. 6

Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars. Cam-
bridge University Press, New York, NY, USA, 2010. 4

J. De Ruiter and E. Poll. Protocol state fuzzing of tls implementations. In USENIX
Security Symposium, pages 193–206, 2015. 5

A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun.
Dermatologist-level classification of skin cancer with deep neural networks. Nature,
542(7639):115–118, 2017. ISSN 0028-0836. 3

R. Eyraud, J. Heinz, and R. Yoshinaka. Efficiency in the Identification in the Limit
Learning Paradigm, pages 25–46. Springer Berlin Heidelberg, 2016. ISBN 978-3-662-
48395-4. doi: 10.1007/978-3-662-48395-4_2. 6

R. Freivalds and T. Zeugmann. Active learning of recursive functions by ultrametric
algorithms. In Proc. of SOFSEM: Theory and Practice of Computer Science, pages
246–257, 2014. 6

D. Głowacka, J. Shawe-Taylor, A. Clark, C. de la Higuera, and M. Johnson. Introduction
to the special topic on grammar induction, representation of language and language
learning. Journal of Machine Learning Research, 12:1425–1428, 2011. 4

E. M. Gold. Language identification in the limit. Information and Control, 10(5):
447–474, 1967. 6

A. Hagerer, H. Hungar, O. Niese, and B. Steffen. Model Generation by Moderated
Regular Extrapolation, pages 80–95. Springer Berlin Heidelberg, 2002. 5

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1405187840.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1405187840.html

Bibliography 9

M. Isberner, F. Howar, and B. Steffen. The open-source learnlib - A framework for
active automata learning. In Proc. of Computer Aided Verification, pages 487–495,
2015. 6

L. Ljung. System Identification, pages 163–173. Birkhäuser Boston, 1998. 4

W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943. ISSN 1522-
9602. doi: 10.1007/BF02478259. URL https://doi.org/10.1007/BF02478259. 4

J. Meijer and J. van de Pol. Sound black-box checking in the learnlib. In Proc. of NASA
Formal Methods, pages 349–366, 2018. 6

A. Quattoni, X. Carreras, and M. Gallé. A maximum matching algorithm for basis
selection in spectral learning. In Proc. of the International Conference on Artificial
Intelligence and Statistics, pages 1477–1485, 2017. 6

C. Shibata and R. Yoshinaka. Probabilistic learnability of context-free grammars with
basic distributional properties from positive examples. Theoretical Computer Science,
620:46–72, 2016. 6

D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, 2016. 3

R. Sparrow and M. Howard. When human beings are like drunk robots: Driverless ve-
hicles, ethics, and the future of transport. Transportation Research Part C: Emerging
Technologies, 80:206 – 215, 2017. 3

F. Vaandrager. Model learning. Commun. ACM, 60(2):86–95, 2017. ISSN 0001-0782. 5

W. van der Lee and S. Verwer. Vulnerability detection on mobile applications using
state machine inference. In Proc. of the IEEE European Symposium on Security and
Privacy Workshops, pages 1–10, 2018. 6

R. Yoshinaka. Identification in the limit of k, l-substitutable context-free languages.
In Proc. of the International Conference on Grammatical Inference, pages 266–279,
2008. 6

R. Yoshinaka and A. Clark. Polynomial time learning of some multiple context-free
languages with a minimally adequate teacher. In Proc. of Formal Grammar, pages
192–207, 2010. 6

https://doi.org/10.1007/BF02478259

Chapter 2

On the Formalization of Learning

Contents
2.1 Introduction . 12

2.1.1 On learning paradigms . 12

2.1.2 Preliminary definitions . 13

2.2 PAC learning and other learning paradigms 14

2.2.1 PAC paradigm . 14

2.2.2 Active Learning . 16

2.2.3 Other learning paradigms . 17

2.3 The limits of Gold’s paradigm . 18

2.3.1 The importance of efficiency in learning 18

2.3.2 Identification in the limit . 18

2.3.3 Polynomial time . 20

2.3.4 Identification of a language and the size of a target representation 21

2.4 First refinements . 22

2.4.1 Mind changes and implicit errors of prediction 22

2.4.2 Characteristic Sample . 24

2.5 Recent refinements . 27

2.5.1 Structurally complete set . 27

2.5.2 Thickness . 29

2.5.3 Comparison of the two refinements 30

2.6 Conclusion . 31

Bibliography . 32

Context of this work

The first version of this chapter was written few years ago with this Habilitation à
Diriger des Recherches (HDR) in mind. At the time a global draft was achieved,
Jeffrey Heinz suggested to use it in the book he was working on with José M. Sempere.

12 Chapter 2. On the Formalization of Learning

Given the short deadline, it was decided that Jeffrey himself would assist polishing the
document while we asked Ryo Yoshinaka to help, since some of the results presented here
are based on his work. This rushy effort leaded to the second version of this chapter,
titled Efficiency in the identification in the limit paradigm [Eyraud et al., 2016] and
published in the book Topics in Grammatical Inference [Heinz and Sempere, 2016].

This third version is close to the one already published. However, an effort has been
made to smoothly insert this chapter into this HDR: other paradigms are given longer
description, non-central proofs are omitted, the bibliography has been extended, etc.

2.1 Introduction

2.1.1 On learning paradigms

Computer Science is a science that can be both fundamental and experimental. Machine
Learning does not escape this duality and thus two different paths exist when one is
interested in validating an algorithmic idea for a learning algorithm.

On the one hand, the practical approach consists in using the available benchmark
data to test the quality of the learning algorithm (employing for instance the well-known
cross-validation technique).

On the other hand, a theoretical approach is possible by using a learning paradigm,
which is an attempt to formalize what learning means. Such a framework provide a
setting to study the behavior of learning algorithms and to formally establish their
soundness.

We address here this second path by surveying different learning paradigms in the
context of grammatical inference. We first introduce preliminary mathematical def-
initions that are needed for an adequate formalization and that we will try to use
throughout the whole document.

We then discuss the relevance of several paradigms toward the goal of grammatical
inference, including the well-known PAC learning framework [Valiant, 1984] and the
one historically called Active Learning [Angluin, 1987] (Section 2.2). The rest of the
chapter focuses on the most popular paradigm in GI, the one introduced by Gold [1967]
and named the identification in the limit, whose initial formalization requires the learner
to be fed with an infinite sequence of data and the exact convergence to be achieved in
a finite time:

• Section 2.3 studies the limitations of its initial definition when efficiency is con-
sidered and first attempts to overcome them. These include requirements based
on the running time of the studied algorithm.

• Efficiency requirements depending on the incremental behavior of algorithms in
the Gold’s paradigm are detailed in Section 2.4. Importantly, a set-driven refine-

2.1. Introduction 13

ment of the paradigm that allows the emancipation from its asymptotic essence
is also given in this section.

• Section 2.5 introduces two recent reformulations of the paradigm.

2.1.2 Preliminary definitions

An alphabet Σ is a finite non-empty set of symbols called letters. A string w over Σ

(sometime called a word) is a finite sequence w = a1a2 . . . an of letters. Let |w| denote
the length of w, that is, the number of letters in w. Given a set of strings S, we denote
|S| its cardinality and ||S|| its size, i.e. the sum of |S| with the lengths of the strings S
contains1. In the following, letters will be indicated by a, b, c, . . ., strings by u, v, . . . , z,
and the empty string, that is the string of length 0, by λ. The set of all strings is
denoted Σ∗, corresponding to the free monoid generated by Σ. We denote Σ+ the set
Σ∗ \ {λ}.

We assume a fixed but arbitrary total order < on the letters of Σ. As usual, we
extend < to Σ∗ by defining the hierarchical order [Oncina and García, 1992], denoted
by C, as follows:

∀w1, w2 ∈ Σ∗, w1 C w2 iff

|w1| < |w2| or
|w1| = |w2| and ∃u, v1, v2 ∈ Σ∗,∃a1, a2 ∈ Σ

s.t. w1 = ua1v1, w2 = ua2v2 and a1 < a2.

C is a total strict order over Σ∗, and if Σ = {a, b} and a < b, then λC aC bC aaC abC
baC bbC aaaC . . .

We extend this order to non-empty finite sets of strings: S1CS2 iff ||S1|| < ||S2|| or
||S1|| = ||S2|| and ∃w ∈ S1\S2 such that ∀w′ ∈ S2\S1, wCw′. For instance {a}C{λ, a}
and {a, b}C {aaa}.

By a language L over Σ we mean any set L ⊆ Σ∗. Many classes of languages were
investigated in the literature. In general, the definition of a class L relies on a class R of
abstract machines2, called representations or computational models, that characterize all
and only the languages of L. The relationship is given by the naming function L : R→ L
such that: (1) ∀R ∈ R,L(R) ∈ L and (2) ∀L ∈ L,∃R ∈ R such that L(R) = L. Two
representations R1 and R2 are equivalent iff L(R1) = L(R2).

Many different classes of representations have been studied in the literature. It is
beyond the scope of this chapter to exhaustively list them. However, we introduce the
following definition, which is a generalization of some well-known classes of grammars.
We will mainly focus on the classes of representations whose characterization can be
done in this context.

1 We define ||S|| = |S| +
∑
w∈S |w| so that ||{a}|| < ||{λ, a}||.

2This is not strictly necessary: for instance, the substitutable languages [Clark and Eyraud, 2007]
have no grammatical characterization.

14 Chapter 2. On the Formalization of Learning

Definition 2.1 (Generative grammar). G = 〈Σ, N, P, I〉 where Σ is the alphabet of the
language, N is a set of variables usually called non-terminals, P ⊂ (N∪Σ)+×(N∪Σ)∗ is
the set of generative (production) rules, I is the finite set of axioms, which are elements
of (Σ ∪N)∗.

A generative rule (α, β) is usually denoted α→ β. It allows the rewritten of elements
of (Σ∪N)∗ into elements of (Σ∪N)∗. Given γ ∈ (Σ∪N)∗ we say that a production rule
α→ β applied to γ if it exists η, δ ∈ (Σ∪N)∗ such that γ = ηαδ. The result of applying
this rule on γ is ηβδ. We write γ ⇒ ηβδ. ⇒∗ is the reflexive and transitive closure
of ⇒, and ⇒∗P is the reflexive and transitive closure of ⇒ restricted to the production
rules in a given set P .

We define the size of a generative grammar to be the size of the set of its rules, plus
the size of its set of axioms: ||G|| = ||I||+ |P |+

∑
α→β∈P (|αβ|+ 1).

Definition 2.2 (Generated language). Let G = 〈Σ, N, P, I〉 be a generative grammar.
L(G) = {w ∈ Σ∗ : ∃α ∈ I s.t. α⇒∗P w}.

Example 1. The usual classes of the Chomsky hierarchy are classes of generative
grammars. Regular grammars correspond to the restriction P ⊂ N × (ΣN ∪ {λ}), or
P ⊂ N × (NΣ ∪ {λ}) by symmetry. The context-free grammars are the ones where
P ⊂ N × (Σ ∪ N)∗ while the context-sensitive grammars are the ones such that if
α→ β ∈ P then ∃(γ, δ, η) ∈ (Σ∪N)∗, A ∈ N : α = δAη and β = δγη. If no restrictions
are imposed on the rules of the grammar, then the resulting class of representations
corresponds to that of the unrestricted grammars. All of these classes were formerly
defined with a set of axioms reduced to one element of N [Chomsky, 1956].

Example 2. String Rewriting Systems (SRS) [Book and Otto, 1993] are generative
devices where N = ∅. A rule corresponds to an element of Σ∗ rewritten into an element
of Σ∗ and the set of axioms is made of elements of Σ∗. The language represented by an
SRS is the set of strings that can be rewritten using the rules from an element of I.

Some classes of representations that have been studied in grammatical inference
are not covered by Definition 2.1. This is the case for instance for multiple context-
free grammars [Seki et al., 1991], patterns [Angluin, 1980b], tree [Comon et al., 2007]
and graph [Rozenberg, 1997] grammars, etc. While it is not difficult to generalize the
definition in order to cover these classes, we conduct the discussion of this chapter in
the context of the above definition for concreteness and due to its familiarity.

2.2 PAC learning and other learning paradigms

2.2.1 PAC paradigm

The most known paradigm in machine learning is certainly the Probably Approximately
Correct (PAC) criterium [Valiant, 1984] and its refinements [Li and Vitanyi, 1991, Lang-

2.2. PAC learning and other learning paradigms 15

ford, 2005]. Unlike the identification in the limit paradigm, the PAC framework comes
with built-in efficiency requirements so PAC-learners are efficient in important senses.
A natural question then is Why work on refinements of the identification in the limit
paradigm to add efficiency constraints when the PAC framework can be utilized instead?
Evidently, part of the answer is that the PAC learning paradigm concerns approxima-
tion: we already discussed in Chapter 1 the limitations of such a goal.

In addition, we argue here that this paradigm is not well-adapted to learning formal
languages, as even very simple and well characterized classes of languages are not PAC-
learnable [Angluin et al., 2012]. Several theoretical reasons explain this inadequacy, and
each of them relates to aspects of the computational models used to represent formal
languages.

One of the main reasons is that the VC-dimension of even the simplest models of
language representations, namely the finite state automata, is not bounded: the VC-
dim of the class restricted to automata of n states is n [Ishigami and Tani, 1997] which
makes the whole class not learnable in the PAC sense [Blumer et al., 1989]. Indeed,
not even the class of finite languages has finite VC-dimension. This is closely related
to the fact that the learning principle of empirical risk minimization [Vapnik, 1995],
inherent in most approaches studied under the PAC framework (and more generally
in SML), is of little use when formal languages are considered. Indeed, the number of
representations consistent to a given set of data of a target language, that is to say
representations that correctly explain all the data, is often infinite. It is then useless to
reduce the hypothesis space to the ones that minimize the error on a given set of data.

Similarly, consider the fact that the PAC paradigm does not suffer from the main
drawback of identification in the limit of being asymptotic. Unlike PAC learning, in
identification in the limit, there is no guarantee provided about the quality of the
hypothesis before the (exact) convergence happens. However this apparent drawback
seems to be inherent to the kind of representations of the learning targets considered.
Even if two generative grammars have all but one of their rules in common, the languages
of these two grammars can be as far apart as one wishes. This problem is inherent to the
nature of formal languages and their grammatical representations. This ‘Gestalt-like’
property is unavoidable in the formalization of learning: the whole grammar is more
than the sum of its rules. In our view, this mainly justifies the use of identification in
the limit in the context of grammar learning.

Another reason is that a representation of a formal language is not only a classifier,
that is to say a device that defines what is in the language and what is not, but it also
gives structural information about the elements of the language.

Also, there are concerns that are more independent of the representations. Another
particularity of language learning is that a lot of algorithms use only positive examples
of a target concept, while the statistical machine learning framework relies on labeled

16 Chapter 2. On the Formalization of Learning

data3.
Finally, PAC learning is particularly pertinent in the case of statistical models,

where the probability of making a mistake can be evaluated using the hypothesis. This
particular attribute of the PAC paradigm is of less value when non-stochastic model
learning is of interest. But even while grammatical inference is concerned with learning
probability distributions over strings, the power of the considered models makes the
paradigm be inadequate: there are for instance infinitely many structurally different
probabilistic context-free grammars that define the same set of distributions [Hsu et al.,
2013].

To be complete, some positive learning results exist in restrictive versions of the
PAC-paradigm, mostly in the case where the target distribution is known to be drawn
using a given class of stochastic grammars [Denis and Gilleron, 2001], and with addi-
tional restrictions that allow to distinguish the different parts of the target from any
sample (see the work of Ron et al. [1995], Clark and Thollard [2004], Shibata and
Yoshinaka [2016] for examples).

2.2.2 Active Learning

In the Active Learning paradigm, also known as Query Learning, Exact Learning, or
interactive learning, the learner interacts with an oracle. The aim is to identify a
computational model by querying the oracle in order to get data corresponding to this
target.

A wide range of types of queries has been investigated, the two most known being

• the Membership Queries (MQ) [Moore, 1956] where the oracle answers whether a
given string belongs to the language or not.

• the Equivalence Queries (EQ) [Angluin, 1987] that allows the learner to know if
its current hypothesis is the target one.

In this framework, efficiency is measured by the number of queries the algorithm
needs to converge to a hypothesis equivalent to the target: the aim is to design an
algorithm that requires a number of queries polynomial in the size of the target model.
de la Higuera [2016] offers a recent and complete overview of this paradigm.

Numerous positive learning results have been provided in this context, among which
we can cite for instance: Angluin [1987] proved that regular languages are learnable
under this paradigm from a Minimum Adequate Teacher, that is to say an oracle that
answers membership and equivalence queries; The learning of Mealy machines and
even register machines have been successfully investigated [Isberner et al., 2014] in the
context of model checking; Subclasses of context-free languages [Clark, 2010a] and even
beyond context-free [Yoshinaka and Clark, 2010] have been proven learnable.

3In SML terms, this framework corresponds to one-class unsupervised learning.

2.2. PAC learning and other learning paradigms 17

Although this paradigm can be of practical interest as the works on model checking
and software specifications have shown, and though they can also be motivated by the
study of first language acquisition [Chater et al., 2015], the requirement of an oracle
clearly reduces the practical interest of an algorithm investigated in this framework.
Indeed, the usual machine learning framework requires the existence of a learning sample
but does not provide an oracle4.

2.2.3 Other learning paradigms

There exist other less studied learning frameworks which eschew identifiability in the
limit in order to incorporate notions of computational efficiency. The aim here is not
to give an exhaustive list of such paradigms: we just want to give pointers to the main
ones.

The first one we would like to describe is derived from the active learning one: the
learning algorithm have access to an oracle that answers membership queries together
with a finite sample of examples of the language to identify. Pao and Carr III [1978]
introduced it in the Seventies, but its success is recent. Indeed, several algorithms have
been proposed in this framework during the last decade, mostly in what is called distri-
butional learning [Clark, 2010b, Yoshinaka and Kanazawa, 2011, Clark and Yoshinaka,
2014a,b, Kanazawa and Yoshinaka, 2017]. This is also the paradigm used for the work
presented in Chapter 3 of this document.

Another learning paradigm that can be used to study GI algorithms is the one of
stochastic finite learning [Zeugmann, 2003]. In this framework, an algorithm is said to
have learned a language if, from any infinite sequence of data of this language drawn
from a probability distribution, it stops after having seen a finite number of elements and
its hypothesis at that point is correct with high probability. The expected number of
examples that the learner needs before convergence forms a measure of the algorithm’s
efficiency. This approach is similar in its aims to identification in the limit, but it can
also be seen as a probably exactly correct paradigm. It is thus a tempting way to
fill the gap between PAC-learning and identification in the limit. However, results in
this paradigm are hard to obtain and even simple classes of languages are known to
be not learnable. In addition, many of the arguments of the previous section on the
PAC-paradigm work can be used for this formalization. On the other hand, there are
positive results for subclasses of pattern languages [Zeugmann, 2006].

We believe the reasons above, or some combination thereof, have led many scholars
to seek a way to incorporate efficiency into the identification in the limit paradigm (as
opposed to abandoning the paradigm altogether).

4Notice nevertheless that the initial formulation of the PAC-learning criterium required a member-
ship oracle [Valiant, 1984].

18 Chapter 2. On the Formalization of Learning

2.3 The limits of Gold’s paradigm

2.3.1 The importance of efficiency in learning

Gold [1967] introduced in the 1960s a definition of learning called identification in the
limit, which works as follows. An algorithm is fed with an infinite sequence of data
exemplifying a target language. When a new element is given to the algorithm, it may
output a hypothesis. The algorithm identifies the language in the limit if for any possible
sequence of data for this language, there exists a moment from when the algorithm does
not change its hypothesis, and this hypothesis is a correct representation of the target
language. When a whole class of languages is considered, the algorithm identifies the
class in the limit if it can identify all languages of the class.

The fact that the convergence is required to hold whatever the sequence of data
is what makes this paradigm be adversarial [Clark and Lappin, 2011]. This worst-
case scenario principle strengthens the value of any algorithmic idea that yields an
identification in the limit result for a class of languages [Heinz, 2014].

However, Gold’s formulation can be of little help for practical purposes, when one
wants to study a learning idea with the aim of applying it to real-world data. This is
mainly due to the fact that no efficiency property is required and thus one can assume
infinite time and space. This is the reason why several refinements of Gold’s model
which add polynomial bounds to the requirements of the paradigm have been developed.
The purpose of this chapter is to comprehensively review the proposed refinements and
the challenges they face. Main results of each approach, along with comparisons, are
provided.

2.3.2 Identification in the limit

We now provide a detailed formalization of the identification in the limit paradigm.
A presentation P of a language L is an infinite sequence of data corresponding to

L. We note P [i] the ith element of P and Pi the set of the ith first elements of P . If the
data contains only elements of L then the presentation is called a text of language L.
A text T is a complete presentation of L iff for all w ∈ L there exists n ∈ N such that
T [n] = w. If data in the presentation are instead pairs (w, l), such that w ∈ Σ∗ and l is
a Boolean valued true if w ∈ L and false otherwise, then the presentation is called
an informant. An informant I is a complete presentation of L iff for all w ∈ Σ∗ there
exists n ∈ N such that I[n] = (w, l). In the rest of the chapter, we will only consider
complete presentations.

A learning algorithm in this context, sometimes called an inductive inference ma-
chine, is an algorithm that takes as input larger and larger initial segments of a pre-
sentation and outputs, after each input, a hypothesis from a pre-specified hypothesis
space.

2.3. The limits of Gold’s paradigm 19

Definition 2.3 (Identification in the limit [Gold, 1967]). A class L of languages is
identifiable in the limit (IIL) from text (resp. from informant) if and only if there exists
a learning algorithm A such that for all language L ∈ L, for all text T (resp. informant
I) of L,

• there exists an index N such that ∀n ≥ N , A(Tn) = A(TN) [resp. A(In) = A(IN)]

• L(A(TN)) = L [resp. L(A(IN)) = L]

Angluin [1980a] characterizes exactly those classes of languages that are identifiable
in the limit from text. The central theorem in this work refers to the presence of
‘telltale’ finite subsets for each language in the class. Later, in section 2.4.2, we will see
an efficiency bound in terms of ‘characteristic’ finite subsets of languages (these are not
exactly the same as Angluin’s telltale subsets).

Gold [1967] established three important results in this paradigm. The first is that
the class of all finite languages is identifiable in the limit from text. The second is that no
superfinite class of languages can be identified in the limit from text. Despite what the
name may evoke, a class of languages is superfinite if it contains all finite languages and
at least one infinite language (the class contains thus an infinite number of languages).
The third is that any computably enumerable class whose uniform membership problem
is decidable5 is identifiable in the limit from informant.

The proof of the second result relies on the fact that given a presentation of an
infinite language L, there does not exist any index N from which a learner can distin-
guish the finite language made of the strings seen so far and the infinite language. If
the algorithm converges to L on a complete text T for L at N then there is a text for
the finite language containing all and only the strings in TN for which the algorithm
will also converge to L. Hence the algorithm fails to identify this finite language in the
limit.

On the other hand, the learning algorithm for the third result (learning any com-
putably enumerable class with informant) is really naive: it enumerates the elements of
the class until it finds the first one consistent with the information so far. In other word,
the algorithm always conjectures the first language in the enumeration that accepts all
positive examples (labeled true) and rejects all negative ones (labeled false). If it
is the correct hypothesis, the algorithm has converged. If not, then there will be an
example later in the presentation that will be inconsistent with the current hypothe-
sis and consequently the algorithm will move along down the enumeration to the next
consistent language.

This third result, though of positive nature, is one of the main reasons that the
identification in the limit paradigm needs to be refined to include a notion of tractability.

5The uniform membership problem is the one where given a string and a representation one needs
to determine whether the string belongs to the represented language.

20 Chapter 2. On the Formalization of Learning

‘Learning by enumeration’ is clearly not tractable and thus is of little use. While it meets
the letter of the definition of learning, it violates our intuitions of what learning should
be like. At first glance, a natural way to exclude such learning ‘solutions’ is to add a
tractability requirement to the definition in some way. However, as we now discuss, this
is more difficult than it may initially appear.

For more on variations of Gold’s original paradigm see the chapterGeneral Highlights
since Gold by Case [2016] in the book Topics in Grammatical Inference [Heinz and
Sempere, 2016].

2.3.3 Polynomial time

Given the limitations of IIL shown in the previous section, designing requirements to
add to the paradigm is needed to strengthen the validity of learning ideas. An intuitive
way to deal with that is to constrain the time allowed for the algorithm to make its
computations.

Limiting the overall running time appears inappropriate since languages may have
infinite cardinality and concomitantly there is no bound on the length of the strings.
Thus for any polynomial function p, infinite language L, and number n, there is a pre-
sentation P for L such that the first element of P is larger than p(n). Stochastic finite
learning [Zeugmann, 2003] would be of great interest to readers concerned with this
problem since it replaces this worst-case scenario with a learning framework that fo-
cuses on expected convergence (where presentations are drawn according to probability
distributions).

A more consensual requirement is update-time efficiency. An algorithm is update-
time efficient if it outputs a new hypothesis in time polynomial in the size of the data
seen so far. This is reasonable as far it goes. Unfortunately, this requirement turns out
to be no real restriction at all.

In a seminal paper Pitt [1989] shows that update-efficiency is not sufficient to prove
the validity of a learning approach. Indeed, using a method now known as Pitt’s trick,
he proves that any algorithm that can identify a class in the limit can be transformed
into an algorithm that identifies the class in the limit and is update-time efficient.

Informally the proof relies on the fact that, given a presentation P , if a learner
converges to a correct hypothesis on the initial sequence Pi, a variant can delay the
computation of any interesting hypothesis until having seen Pj (j > i) such that the
computation time of the initial learner on Pi is polynomial in ||Pj ||. This variant of the
learning algorithm then has an efficient update-time while also fulfilling the conditions of
identification in the limit. Pitt’s trick essentially trades time for data so that enforcing
tractability in this way has no impact. The set of classes of languages identifiable in
the limit without the update-time requirement is exactly the same as the set of classes
of languages identifiable in the limit with it.

2.3. The limits of Gold’s paradigm 21

Pitt’s trick reveals that algorithms may be able to efficiently output hypotheses, but
convergence can only occur after non-reasonable amounts of data have been provided.
This lessens the practical utility of the theoretical results provide when real data is
taken into account.

One may wonder if one can prohibit Pitt’s trick, which ignores the great part of the
given data, by forcing a learner to respect all the given data. Case and Kötzing [2009]
show that apparently reasonable properties to force a learner to take all the examples
into account are not strong enough to prevent Pitt’s trick actually when learning from
text.

2.3.4 Identification of a language and the size of a target representa-
tion

Despite the problem described in the previous section, the requirement of polynomial
update-time is still desirable. Efforts have been made to enrich the paradigm further
such that Pitt-style delaying tricks are not possible.

Most additional requirements are based on the same method: they link the behavior
of the algorithm to the size of a representation of the target language. Indeed, though
the identification of the target language is required, a polynomial bound cannot be
established with respect to the size of the language since non-trivial classes of languages
often contain an infinite number of infinite languages. A representation of finite size of
the target language is thus needed. Choosing a target representation also focuses the
attention on the hypothesis space of the algorithm, which is relevant from a machine
learning standpoint.

However, the choice of representations is not central at all in Gold’s learning
paradigm as a learner’s hypotheses can converge to an arbitrary one among equiva-
lent representations for the correct language. The apparent consequence is that the
choice of a representation class for a target language class does matter when taking the
representation size into account.

But this duality between the identification of a language and an efficiency bound
on the size of a target representation has consequences that need to be handled care-
fully. For example, it is well known that a non-deterministic finite automaton can be
exponentially smaller than the smallest deterministic finite automaton accepting the
same language. A learning algorithm that behaves efficiently with respect to the size
of deterministic finite automata may not be admitted as an efficient algorithm in terms
of the size of non-deterministic finite automata. The reader is referred to the chapter
On the inference of finite state automata from positive and negative data [López and
García, 2016] for details on this question.

In general, an inefficient learner can be seen as an efficient learner by choosing a
class of redundant representations. Therefore, it is important to make it clear under

22 Chapter 2. On the Formalization of Learning

which class of representations the efficiency of a learner is discussed.
In principle, the choice of a representation class is arbitrary and seems hard to jus-

tify, but in practice there exist orthodox or natural representations for target language
classes. For example, minimal deterministic (canonical) finite state automata are widely
used to represent regular languages. Since they are uniquely determined based on an
algebraic property of regular languages, there is no room to inflate the representation
size.

An intuitive way to deal with the duality exposed above would be to define a
paradigm where identification is on a target representation and not on a language.
The formalization of this idea is known as strong identification [Clark, 2014]. However,
this approach only makes sense for classes of representations where each language ad-
mits a unique representative: otherwise, it is impossible for any algorithm to distinguish
between the different grammars generating the same language, and thus the identifica-
tion cannot succeed. The use of canonical finite-state automata in the work on regular
languages [Oncina and García, 1992] is an example of such an approach.

2.4 First refinements

2.4.1 Mind changes and implicit errors of prediction

One way to formalize the notion of convergence with a reasonable amount of data with
respect to the size of the representation is to measure the number ofmind changes [Blum
and Blum, 1975, Ambainis et al., 1999]. Another way is to measure the number of
implicit prediction errors [Pitt, 1989].

Amind change occurs when a learning algorithm replaces its current hypothesis with
another. Then one adds to the identification in the limit paradigm the requirement that
the number of mind changes made before convergence must be bounded by a polynomial
function in the size of the representation.

However, Pitt [1989] presents another trick where the algorithm postpones changing
its mind solely to meet the requirements of the mind change bound. Consequently, the
algorithm maintains untenable hypotheses (ones inconsistent with the data) until a
sufficient amount data is seen so that a mind change can occur without violating the
polynomial bound on the number of mind changes.

Measuring implicit predictions errors can get around this trick when learning from
an informant. When the learner’s current hypothesis is inconsistent with a new datum,
it is called an implicit error of prediction. Then one adds to the identification in the
limit paradigm the requirement that the number of times the current hypothesis is
in contradiction with the new example has to be polynomial in the size of the target
representation. More formally:

Definition 2.4 (Identification in Polynomial Number of Implicit Errors).

2.4. First refinements 23

• Given a presentation P , an algorithm A makes an implicit error of prediction at
step n if the language of the hypothesized target A(Pn) is in contradiction with
P [n+ 1].

• A class G of representations is polynomial-time identifiable in the limit in Pitt’s
sense if G admits a polynomial time learning algorithm A such that for any presen-
tation of L(G) forG ∈ G, Amakes implicit errors of prediction at most polynomial
in ||G|| [Pitt, 1989].

• A class G of representations is polynomial-time identifiable in the limit in Yoko-
mori’s sense if G admits a polynomial time learning algorithm A such that for
any presentation P of L(G) for G ∈ G, for any natural number n, the number of
implicit errors of prediction made by A on the nth first examples is bounded by a
polynomial in m · ||G||, where m = max{|P [1]|, . . . , |P [n]|} [Yokomori, 1995].

Notice that Yokomori’s formulation is a relaxed version of that of Pitt’s.
However, if the presentation is a text, there is yet another unwanted Pitt-style

delaying trick: the algorithm can output a representation for Σ∗, which will never be in
contradiction with the data. It can then wait to see enough examples before returning
a pertinent hypothesis.

On the other hand, if the presentation is an informant, then the additional require-
ment limiting the number of implicit prediction errors is significant because there is
no language like Σ∗ which is consistent with both the positive and negative examples.
Consequently, it can be shown that not all classes of languages identifiable in the limit
in polynomial update time are identifiable in the limit in Pitt’s sense or in Yokomori’s
sense: in the former paradigm, an algorithm working in polynomial time can change
its hypothesis an exponential number of times before convergence, while in the latter
paradigms this is not allowed and cannot be circumvented as in the case of texts. Note
this is different from the mind-change requirement, where the delaying trick there works
in both kinds of presentations: in that case, the algorithm can choose to not update its
hypothesis when a new example contradicts it.

Another property of these requirements is that they are mainly designed for incre-
mental algorithms. Indeed, these paradigms give a lot of importance to the sequence
of data, in particular as the parts of two sequences that contains the same elements
in a different order might not correspond to the same number of implicit errors (or
mind changes). This forces the complexity analysis to consider particularly malevolent
sequences of data. However, in many practical frameworks, for instance in Natural Lan-
guage Processing or Bio-Informatics, we are interested by algorithms that work from a
finite set of data, where the order of presentation is irrelevant. From this perspective,
the (inadvertent) focus on an incremental process appears to be a drawback.

The main positive learning results using this approach concerns the class of very
simple languages [Yokomori, 2003, Yoshinaka, 2009]: an algorithm has been designed

24 Chapter 2. On the Formalization of Learning

that fulfills the requirements of Yokomori’s formulation of the paradigm. This class of
languages is incomparable with the class of regular languages and contains context-free
languages.

2.4.2 Characteristic Sample

The most widely used definition of data efficiency relies on the notion of characteristic
sample. The characteristic sample is a finite set of data from a language L that ensures
the correct convergence of the algorithm on any presentation of L as soon as it is
included in the data seen so far. For some, these characteristic samples evoke Angluin’s
telltale subsets [Angluin, 1980a], also of finite size, which were central to characterizing
the nature of classes of formal languages identifiable in the limit from text.

In this learning paradigm [de la Higuera, 1997], it is required that the algorithm need
a characteristic sample whose size6 is polynomial in the size of the target representation.
Formally:

Definition 2.5 (Identification in the limit in polynomial time and data). A class of
languages L is identifiable in the limit in polynomial time and data from a class R of
representations iff there exist a learning algorithm A and a polynomial p() such that
for any language L ∈ L, for any representation R ∈ R of L:

• A has a polynomial update-time,

• there exists a set of data CS, called a characteristic sample, of size at most p(||R||)
such that for any presentation P of L, if CS ⊆ Pn then A(Pn) is equivalent to R,
and for all N > n, A(PN) = A(Pn)

The idea underlying the paradigm is that if the data available to the algorithm so
far does not contain enough information to distinguish the target from other potential
targets then it is impossible to learn. This complexity requirement diverges from update-
time requirements above in that incremental learning algorithms no longer sit at the
core of the paradigm. Indeed, limiting the complexity in terms of the characteristic
sample makes possible the set-driven definition that we are developing below.

Definition 2.6 (Set-driven framework). Let L be a class of languages represented by
some class R of representations.

1. A sample S for a language L ∈ L is a finite set of data consistent with L. A
positive sample for L is made only of elements of L. A positive and negative

6The size of a sample is the sum of the length of its elements: it has been shown [Pitt, 1989] that
its cardinality is not a relevant feature when efficiency is considered, as it creates a risk of collusion:
one can delay an exponential computation on a given sample of data and wait for a sufficient number
of examples to run the computation on the former sample in polynomial time in the size of the latter.

2.4. First refinements 25

sample for L is made of pairs (w, l), where l is a boolean such that l = true if
w ∈ L and l = false otherwise. The size of a sample S is the sum of the size of
all its elements plus |S|.

2. An (L,R)-learning algorithm A is a program that takes as input a sample for a
language L ∈ L and outputs a representation from R.

We can now formalize the notion of characteristic sample in the set-driven approach.

Definition 2.7 (Characteristic sample). Given an (L,R)-learning algorithm A, we say
that a sample CS is a characteristic sample of a language L ∈ L if for all samples S
such that CS ⊆ S, A returns a representation R such that L(R) = L.

Hopefully it is evident that the class of representations is especially relevant in this
paradigm.

The learning paradigm can now be defined as follows.

Definition 2.8 (Set-driven identification in polynomial time and data [de la Higuera,
1997]). A class L of languages is identifiable in polynomial time and data (IPTD) from
a class R of representations if and only if there exist an (L,R)-learning algorithm A and
two polynomials p() and q() such that:

1. Given a sample S of size m for L ∈ L, A returns a consistent hypothesis H ∈ R
in O(p(m)) time ;

2. For each representation R of size k of a language L ∈ L, there exists a character-
istic sample of L of size at most O(q(k)).

Notice that the first item is a reformulation of the polynomial update time require-
ment, which is now in terms of the size of the sample. The second item corresponds to
the additional requirement that the amount of data needed to converge is computation-
ally reasonable. By forcing the algorithm to converge to a correct hypothesis whenever
a characteristic sample of reasonable size has been seen, this paradigm tackles the risk
of collusion by forbidding Pitt’s delaying tricks.

The main reason this unusual way to formalize identification is chosen is because
formalizing learning when a set of data is available corresponds to the most common
framework when real-world data is considered.

Furthermore, the set-driven approach encompasses the incremental approach since
any algorithm studied in latter can easily be cast into a set-driven one. In other words,
any algorithm that learns a class of languages in the sense of Definition 2.5 also learns
the class in the sense of Definition 2.8.

However, it is not easy to cast set-driven learners into incremental ones. Naively
one may believe that for any algorithm A satisfying Definition 2.8, there exists an in-
cremental algorithm which satisfies Definition 2.5. The idea would be, for each new

26 Chapter 2. On the Formalization of Learning

data, to run A on the set of data seen so far. However, as shown in the Appendix, this
simple approach will not always work. There is an algorithm for learning the substi-
tutable context-free languages which satisfies definition 2.8 for which this incremental
construction fails. In the appendix of the chapter of Eyraud et al. [2016], it is shown
that unless this incremental algorithm A is conservative7, A will not converge to a single
grammar. However, if A is conservative then there is a presentation at a point of which
the characteristic set is seen but A has not yet converged to the correct grammar. It
remains to be seen whether for every set-driven learner satisfying Definition 2.8, there
is an incremental learner satisfying Definition 2.5.

Main results

Many learning algorithms have been studied in the context of IPTD. The main posi-
tive results concern approaches that use positive and negative examples as input. In
this context, regular languages are learnable [de la Higuera, 1997] using deterministic
finite state automata, and so are deterministic even linear languages as the question
of inferring this class of context-free grammars can be reduced to the one of inferring
deterministic finite state automata [Sempere and García, 1994]. Another related class
of languages that has been positively investigated in this context is the one of deter-
ministic linear languages [de la Higuera and Oncina, 2002]. The algorithms is fed with
positive and negative examples and outputs a deterministic linear grammar.

Context-free languages that are representable by delimited, almost non-overlapping
string rewriting systems are also IPTD-learnable [Eyraud et al., 2007] from positive and
negative examples. Comparisons of this class with the previous ones are difficult since
they are not defined using the same kind of representation.

The whole class of context-free languages is learnable in the IPTD sense [Sakakibara,
1992, de la Higuera, 2010] from structural positive examples, that is to say derivation
trees with no information on the internal nodes. Given a positive integer k, the target
class of representation is the one of k-reversible context-free grammars [Oates et al.,
2002] and the elements of the sample have to correspond to derivation trees of these
grammars.

Limitations

We have already discussed one drawback to measuring the complexity of the learning
problem in terms of the size of the representation: it can be unclear what counts as
a ‘reasonable’ representation. Consequently, it may be possible to artificially inflate
representations to allow learning. This is another kind of trick since the algorithm
would be efficient according to the letter of the definition but not its spirit.

7An incremental learner is conservative if it changes its current hypothesis H if and only if the next
datum is inconsistent with H.

2.5. Recent refinements 27

Identification in polynomial time and data also suffers from the opposite kind of
drawback. As we will see, for non-regular languages, there can be exponentially compact
representations of languages. For such cases, IPTD-learning appears to give the wrong
results: classes which intuitively ought to count as tractably learnable (because they
return a very compact representation of the target language) can in fact be shown to
not be IPTD-learnable. As IPTD was developed and studied in the context of learning
regular languages, neither of these problems arose since minimal deterministic finite-
state automata are considered to be reasonable representations of regular languages.

Example 3 illustrates the problem for the IPTD-learning of non-regular languages. It
shows that context-free languages cannot be learned under this criterion using context-
free grammars. Indeed, the characteristic sample of any grammar of the series has to
contain the only string in the language, but the length of this string is exponentially
greater than the size of the grammar.

Example 3. [de la Higuera, 1997] let G1 = ∪n>0{Gn} be the class of context-free
grammars such that for any n, the unique axiom of Gn is N0 and its production rules
are Ni → Ni+1Ni+1, for 0 ≤ i < n, and Nn → a. The language of Gn is the singleton
L(Gn) = {a2n}.

The reason why this example is not learnable does not come from the hardness
of the languages: they are all made of only one string. But the use of any class of
representations that contains G1 is not identifiable in the limit.

It seems that in this case the problem comes from the definition of what learning
means, that is to say from the learning criterion, rather than the properties of the
language. From an information theory point of view, it is obviously interesting to have
an algorithm that is able to find a model explaining the data it is fed with that is
exponentially smaller than the data. This is actually a desired property in many fields
of machine learning (see Girosi [1998] for instance). Hence, the trouble here comes from
the learning paradigm.

2.5 Recent refinements

In this section, we review two contemporary approaches that develop a definition of
efficient learning which can be applied to non-regular classes of languages. They are
both refinements of the identification with polynomial time and data.

2.5.1 Structurally complete set

We first introduce the following definition:

Definition 2.9 (Structurally Complete Set). Given a generative grammar G, a struc-
turally complete set (SCS) forG is a set of data SC such that for each production α→ β,

28 Chapter 2. On the Formalization of Learning

there exists an element x ∈ SC, an element γ ∈ I and two elements η, τ ∈ (Σ ∪ N)∗

such that γ ⇒∗ ηατ ⇒ ηβτ ⇒∗ x. The smallest structurally complete set (SSCS) S for
a grammar G is the sample such that for all SCS S′ for G, S E S′.

A notion of structurally complete sample has already been defined in the context of
regular language learning [Dupont et al., 1994]. However, this former definition relied on
a particular representation, namely the finite state automaton, and it considered only
the case of positive and negative examples. Definition 2.9 is more general as it does not
depend on a particular representation and does not consider a particular type of data.
Definition 2.9 is a generalization of the notion of representative sample [Tajima et al.,
2004] that have been introduced in the context of learning, from membership queries
and a sample of positive examples, a subclass of context-free languages named simple
deterministic languages.

Definition 2.10 (Polynomial Structurally Complete Identification). A class L of lan-
guages is identifiable in polynomial time and structurally complete data (IPTscD) for a
class R of representations if and only if there exist an algorithm A and two polynomials
p() and q() such that:

1. Given a sample S for L ∈ L of size m, A returns a consistent hypothesis H ∈ R
in O(p(m)) time ;

2. For each representation R of a language L ∈ L, there exists a characteristic
sample CS whose size is in O(q(k)), where k is the size of the smallest structurally
complete set for R.

Notice that in the case where negative data is also available, the size of the charac-
teristic sample has to be polynomial in the size of a SCS which contains only positive
examples. This implies that the amount of negative evidence has to be polynomially
related to that of the positive evidence.

This paradigm shifts the perspective considerably: the efficiency does not rely any-
more directly on the size of the representation but instead on the kind of elements it can
generate. This move is anticipated, and pursued in part, in the approach by Yoshinaka
[2008], discussed in section 2.5.2 below.

Comparison with IPTD

Consider the class of languages L2 =
⋃
n∈N{{ai : 0 ≤ i ≤ 2n}}. This class is identifiable

in polynomial time and data from positive data only using the class of representations
G2 =

⋃
n∈N{〈{a}, {S,A}, {S → A2n , A→ a|λ}, {S}〉}. Indeed, given a target language,

the simple algorithm that returns the only grammar consistent with a sample admit
the characteristic sample {a2n} which is linear in the size of the target. However, the
smallest structurally complete set of any target grammar is {λ, a} which is of size 2.

2.5. Recent refinements 29

As the size of the smallest SCS is constant and the class of languages infinite, L2 is not
identifiable in polynomial time and structurally complete data.

On the other hand, let consider the class of languages of Example 3: L1 =⋃
n∈N{{a2

n}} and its class of representations G1 =
⋃
n∈N{〈{a}, Nn, Pn, {N0}〉}, with

Pn = {Nn → a} ∪0≤i<n {Ni → Ni+1Ni+1}. Given n, the characteristic sample is {a2n}
which is also the smallest structurally complete set for the target grammar. However,
this sample is not polynomial in the size of the target grammar. Therefore L1 is identi-
fiable in the limit in polynomial time and structurally complete data using G1 but not
in polynomial time and data.

This shows that these two paradigms are thus non-comparable. However, most
non-trivial language classes studied under the former paradigm are identifiable in poly-
nomial time and structurally complete data. This is the case for instance of the regular
languages from positive and negative examples and of all sub-regular classes studied in
the context of grammatical inference: there is a linear link between the size of a regular
grammar and what can be derived from any of its non-terminals.

2.5.2 Thickness

In a recent paper Yoshinaka [2008] introduced the identification from a characteristic
sample whose size is a polynomial in the size of the target grammar and of a measure
called the thickness of the grammar.

Definition 2.11 (Thickness). Let G = 〈Σ, N, P, I〉 be a generative grammar. The
thickness of G is τG = max{|ω(α)| : ∃β, α → β ∈ P} where ω(α) = minC{w ∈ Σ∗ :

α⇒∗G w}.

Informally, the thickness is the length of the longest element in the set of the smallest
elements that can be generated from a left hand-side of a grammar rule.

This definition is an extended version of the one that was first introduced for context-
free grammars in the context of model complexity [Wakatsuki and Tomita, 1993]. Notice
that it has nothing to do with the usual notion of thickness in learning theory Angluin
[1980a].

Definition 2.12 (Polynomial Thick Identification [Yoshinaka, 2008]). A class L of
languages is identifiable in polynomial time and thick data (IPTtD) for a class R of
representations if and only if there exist an algorithm A and two polynomials p() and
q() such that:

1. Given a sample S for L ∈ L of size m, A returns a consistent hypothesis H ∈ R
in O(p(m)) time ;

2. For each representation R of a language L ∈ L of size k, there exists a character-
istic sample CS whose size is in O(q(k, τR)).

30 Chapter 2. On the Formalization of Learning

IPTtD is clearly a refinement of IPTD since it simply adds the thickness as a pa-
rameter of the paradigm. It is however a fundamental move since it links the efficiency
of the learning not only on the target representation but also to the kind of strings the
grammar produces. This shift in perspective is a way to indirectly take into account
the length of the strings in the language in the learning criterium. On the other hand,
since it does not go so far as to remove the requirement that the characteristic sample
be polynomial in the size of the grammar, it is still susceptible to inflation tricks.

Learnable classes

Since the size of the representation is used in Definition 2.12, it is clear that every class
of languages that is IPTD is also IPTtD.

However, the converse is not true. Consider the grammars of Example 3: The
thickness of any Gn ∈ G1 is 2n.

More interesting examples are the classes of languages that have been investigated in
the context of what is called distributional learning (see for instance the chapter Distri-
butional Learning from Clark and Yoshinaka [2016] in the book Topics in Grammatical
Inference, or Part II of this HDR). For instance, a context-free language is substitutable
if whenever two substrings appear once in the same context, then they always appear
in the same context in the language [Clark and Eyraud, 2007].

There exists a polynomial time algorithm that identifies the class of context-free
substitutable languages from positive examples only, in the sense of Definition 2.8, but
the exhibited characteristic sample might be of size exponential in the size of the target
representation (this is the case for the languages of Example 3, which are substitutable).
Thus, this algorithm is not IPTD. On the other hand, it is easy to see that this char-
acteristic sample is polynomial in the size and the thickness of the target grammar, so
the algorithm is IPTtD. This result can be extended to the more complex classes that
have been studied in the context of distributional learning from positive examples only
(see for instance [Yoshinaka, 2008, 2011]).

2.5.3 Comparison of the two refinements

Since the IPTD and IPTscD classes are incomparable and every IPTD class is IPTtD,
clearly there is an IPTtD class which is not IPTscD (this is the case for instance of
the class L2 introduced at the end of Section 2.5.1). However, one can show that every
IPTtD class of unambiguous CFGs is IPTscD. Also, it is easy to see that every IPTscD
class of context-free languages is IPTtD using the same class of representations.

The two refinements of polynomial identification share a basic idea – to measure the
complexity by the size of the simplest strings that a grammar generates, rather than
the description size of it. Indeed one can show that the size of the smallest SCS of G is

2.6. Conclusion 31

polynomially bounded by τG||G||. That is, if a language class is IPTscD for a class of
context-free grammars, then it is also IPTtD.

However, the converse is not necessarily true. The following discussion illustrates a
particularly difficult problem for IPTscD learning: ambiguity. Let Gn consists of the
following rules:

Pn = {A→ a, A→ b, B → b } ∪ {S → X1 . . . Xn | Xi ∈ {A,B} } ,

with S being its only axiom. It generates the language L(Gn) = {a, b}n. Then the
set {an, bn}, whose size is 2n + 2, is the smallest SCS for Gn. On the other hand,
||Gn|| ∈ O(n2n) and τGn = n. When learning the class L =

⋃
n∈N Ln where Ln =

{L ⊆ {a, b}n } \ {∅} with a positive sample, the only possible characteristic sample
of L(Gn) is L(Gn) itself for any learning algorithm. Therefore, L is not IPTscD for
any representation class. One can easily see that L is IPTtD for a reasonable class of
grammars where Gn is the unique grammar for {a, b}n.

The grammar Gn is very redundant and highly ambiguous – there are 2n ways to
derive bn. If the redundancy is removed from Gn by deleting the nonterminal B and
the rules involving B, the size of the grammar is now O(n) and it is not IPTtD any
more. In fact, one can show that τG||G|| is polynomially bounded by the size of the
smallest SCS when only unambiguous context-free grammars are considered.

2.6 Conclusion

The purpose of this chapter was to provide a panorama of learning paradigms when
grammatical inference is of concern and to address the problem of efficiency in these
framework. We claimed that the PAC framework is not the best suited one even though
its efficiency requirements are well-designed. On the other hand, we argued in favor of
identification in the limit paradigms provided they are adequately modified to include
efficiency requirements. This survey showed doing so is more challenging than anyone
may have anticipated. We discussed the challenges that have been encountered by
different attempts. For regular languages, de la Higuera [1997] solution is satisfactory
due to the canonical representation given by the smallest deterministic acceptors. For
non-regular languages, challenges remain. We discussed two promising paths forward
to address efficient learning in identification in the limit paradigm in the realm of non-
regular languages. One was based on the notion of a structurally complete sample8,
and the other was based on the ‘thickness’ of strings generated by production rules.
Both are measuring efficiency at least partly in terms of the size of particular strings
generated by grammars. We believe further developments along these lines will help
shape future directions in grammatical inference.

8Note: This paradigm is a new contribution that I have formalized for this chapter.

32 Bibliography

Bibliography

A. Ambainis, S. Jain, and A. Sharma. Ordinal mind change complexity of language
identification. Theoretical Computer Science, pages 323–343, 1999. 22

D. Angluin. Inductive inference of formal languages from positive data. Information
and Control, 45:117–135, 1980a. 19, 24, 29

D. Angluin. Finding patterns common to a set of strings. Journal of Computer and
System Sciences, 21:46–62, 1980b. 14

D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1987. 12,
16

D. Angluin, J. Aspnes, and A. Kontorovich. On the learnability of shuffle ideals. In
Proc.of the Algorithmic Learning Theory Conference, pages 111–123, 2012. 15

L. E. Blum and M. Blum. Toward a mathematical theory of inductive inference. Infor-
mation and Control, 28(2):125–155, 1975. 22

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the
Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989. ISSN
0004-5411. 15

R. Book and F. Otto. String-Rewriting Systems. Springer Verlag, 1993. 14

J. Case. Gold-Style Learning Theory, pages 1–23. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016. 20

J. Case and T. Kötzing. Difficulties in forcing fairness of polynomial time inductive
inference. In Proc. of the Algorithmic Learning Theory Conference, pages 263–277,
2009. 21

N. Chater, A. Clark, J.A. Goldsmith, and A. Perfors. Empiricism and Language Learn-
ability. Oxford University Press, 2015. 17

N. Chomsky. Three models for the description of language. IRE Transactions on
Information Theory, 2:113–124, 1956. 14

A. Clark. Distributional learning of some context-free languages with a minimally
adequate teacher. In J. and P. Garcia, editors, Proc. of the International Colloquium
on Grammatical Inference, pages 24–37. Springer-Verlag, 2010a. 16

A. Clark. Learning context free grammars with the syntactic concept lattice. In J. Sem-
pere and P. Garcia, editors, Proc. of the International Colloquium on Grammatical
Inference, pages 38–51. Springer-Verlag, 2010b. 17

Bibliography 33

A. Clark. Learning trees from strings: A strong learning algorithm for some context-free
grammars. Journal of Machine Learning Research, 14:3537–3559, 2014. 22

A. Clark and R. Eyraud. Polynomial identification in the limit of substitutable context-
free languages. Journal of Machine Learning Research, 8:1725–1745, 2007. 13, 30

A. Clark and S. Lappin. Linguistic Nativism and the Poverty of the Stimulus. Wiley-
Blackwell, 2011. 18

A. Clark and F. Thollard. Pac-learnability of probabilistic deterministic finite state
automata. Journal of Machine Learning Research, 5:473–497, 2004. 16

A. Clark and R. Yoshinaka. Distributional learning of parallel multiple context-free
grammars. Machine Learning, 96:5–31, 2014a. 17

A. Clark and R. Yoshinaka. Distributional learning of parallel multiple context-free
grammars. Machine Learning, 96(1):5–31, 2014b. 17

A. Clark and R. Yoshinaka. Distributional Learning of Context-Free and Multiple
Context-Free Grammars, pages 143–172. Springer Berlin Heidelberg, 2016. 30

H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications, 2007. 14

C. de la Higuera. Characteristic sets for polynomial grammatical inference. Machine
Learning, 27:125–138, 1997. 24, 25, 26, 27, 31

C. de la Higuera. Grammatical inference: learning automata and grammars. Cambridge
University Press, 2010. 26

C. de la Higuera. Learning Grammars and Automata with Queries, pages 47–71.
Springer Berlin Heidelberg, 2016. 16

C. de la Higuera and J. Oncina. Learning deterministic linear languages. In Proc. of
the Conference on Learning Theory, pages 185–200, 2002. 26

F. Denis and R. Gilleron. Pac learning under helpful distributions. RAIRO - Theoretical
Informatics and Applications, 35(2):129–148, 2001. 16

P. Dupont, L. Miclet, and E. Vidal. What is the search space of the regular inference?
In Proc. of the International Colloquium on Grammatical Inference, pages 25–37,
1994. 28

R. Eyraud, C. de la Higuera, and J.-C. Janodet. Lars: A learning algorithm for rewriting
systems. Machine Learning, 66(1):7–31, 2007. 26

34 Bibliography

R. Eyraud, J. Heinz, and R. Yoshinaka. Efficiency in the Identification in the Limit
Learning Paradigm, pages 25–46. Springer Berlin Heidelberg, 2016. 12, 26

F. Girosi. An equivalence between sparse approximation and support vector machines.
Neural Comput., 10(6):1455–1480, 1998. ISSN 0899-7667. 27

E. M. Gold. Language identification in the limit. Information and Control, 10(5):
447–474, 1967. 12, 18, 19

J. Heinz. Computational theories of learning and developmental psycholinguistics. In
J. Lidz, W. Synder, and J. Pater, editors, The Cambridge Handbook of Developmental
Linguistics. Cambridge University Press, 2014. To appear. 18

J. Heinz and J. M. Sempere. Topics in Grammatical Inference. Springer Publishing
Company, Incorporated, 2016. 12, 20

D. Hsu, S. M. Kakade, and P. Liang. Identifiability and unmixing of latent parse trees.
In Advances in Neural Information Processing Systems (NIPS), pages 1520–1528,
2013. 16

M. Isberner, F. Howar, and B. Steffen. Learning register automata: from languages to
program structures. Machine Learning, 96:65–98, 2014. 16

Y. Ishigami and S. Tani. VC-dimensions of finite automata and commutative finite
automata with k letters and n states. Discrete Applied Mathematics, 74:123–134,
1997. 15

M. Kanazawa and R. Yoshinaka. The strong, weak, and very weak finite context and
kernel properties. In Proc. of Language and Automata Theory and Applications, pages
77–88, 2017. 17

J. Langford. Tutorial on practical prediction theory for classification. Journal of Ma-
chine Learning Research, 6:273–306, December 2005. ISSN 1532-4435. 14

M. Li and P. Vitanyi. Learning simple concepts under simple distributions. Siam
Journal of Computing, 20:911–935, 1991. 14

D. López and P. García. On the Inference of Finite State Automata from Positive and
Negative Data, pages 73–112. Springer Berlin Heidelberg, 2016. 21

E. Moore. Gedanken-experiments on sequential machines. In C. Shannon and J. Mc-
Carthy, editors, Automata Studies, pages 129–153. Princeton University Press, 1956.
16

Bibliography 35

T. Oates, D. Desai, and V. Bhat. Learning k-reversible context-free grammars from
positive structural examples. In Proc. of the International Conference in Machine
Learning, pages 459–465, 2002. 26

J. Oncina and P. García. Identifying regular languages in polynomial time. In Advances
in Structural and Syntactic Pattern Recognition, volume 5 of Series in Machine Per-
ception and Artificial Intelligence, pages 99–108. 1992. 13, 22

T.-W. Pao and J. Carr III. A solution of the syntactical induction-inference problem
for regular languages. Computer Languages, 3(1):53 – 64, 1978. ISSN 0096-0551. 17

L. Pitt. Inductive inference, Dfa’s, and computational complexity. In Analogical and
Inductive Inference, number 397 in Lnai, pages 18–44. Springer-Verlag, 1989. 20, 22,
23, 24

D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic probabilistic
finite automata. In Proc. of the Conference on Learning Theory, pages 31–40, 1995.
16

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Trans-
formation: Volume I. Foundations. World Scientific Publishing Co., Inc., 1997. 14

Y. Sakakibara. Efficient learning of context-free grammars from positive structural
examples. Information and Computation, 97:23–60, 1992. 26

H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On multiple context-free grammars.
Theoretical Computer Science, 88(2):191–229, 1991. 14

J. M. Sempere and P. García. A characterization of even linear languages and its
application to the learning problem. In Proc. of the International Colloquium in
Grammatical Inference, pages 38–44, 1994. 26

C. Shibata and R. Yoshinaka. Probabilistic learnability of context-free grammars with
basic distributional properties from positive examples. Theoretical Computer Science,
620:46–72, 2016. 16

Y. Tajima, E. Tomita, M. Wakatsuki, and M. Terada. Polynomial time learning of
simple deterministic languages via queries and a representative sample. Theoretical
Computer Science, 329(1-3):203 – 221, 2004. ISSN 0304-3975. 28

L. G. Valiant. A theory of the learnable. Communications of the Association for
Computing Machinery, 27(11):1134–1142, 1984. 12, 14, 17

V. Vapnik. The nature of statistical learning theory. Springer-Verlag New York, Inc.,
New York, NY, USA, 1995. 15

36 Bibliography

M. Wakatsuki and E. Tomita. A fast algorithm for checking the inclusion for very
simple deterministic pushdown automata. IEICE TRANSACTIONS on Information
and Systems, VE76-D(10):1224–1233, 1993. 29

T. Yokomori. On polynomial-time learnability in the limit of strictly deterministic
automata. Machine Learning, 19:153–179, 1995. 23

T. Yokomori. Polynomial-time identification of very simple grammars from positive
data. Theoretical Computer Science, 1(298):179–206, 2003. 23

R. Yoshinaka. Identification in the limit of k, l-substitutable context-free languages.
In Proc. of the International Colloquium in Grammatical Inference, pages 266–279,
2008. 28, 29, 30

R. Yoshinaka. Learning efficiency of very simple grammars from positive data. Theo-
retical Computer Science, 410(19):1807–1825, 2009. ISSN 0304-3975. 23

R. Yoshinaka. Efficient learning of multiple context-free languages with multidimen-
sional substitutability from positive data. Theoretical Computer Science, 412:1821–
1831, 2011. 30

R. Yoshinaka and A. Clark. Polynomial time learning of some multiple context-free
languages with a minimally adequate teacher. In Proc. of Formal Grammar, pages
192–207, 2010. 16

R. Yoshinaka and M. Kanazawa. Distributional Learning of Abstract Categorial Gram-
mars, pages 251–266. Springer Berlin Heidelberg, 2011. 17

T. Zeugmann. Can learning in the limit be done efficiently? In Proc. of the Algorithmic
Learning Theory conference, pages 17–38, 2003. 17, 20

T. Zeugmann. From learning in the limit to stochastic finite learning. Theoretical
Computer Science, 364(1):77–97, 2006. 17

Part II

Distributional Learning

Chapter 3

On Learning from Strings

Contents
3.1 Introduction . 40

3.2 Basic Definitions and Notations 43

3.3 Contextual Binary Feature Grammars (CBFG) 44

3.3.1 Preliminary Results about Context Inclusion 44

3.3.2 Contextual Binary Feature Grammars 46

3.3.3 A Parsing Example . 48

3.4 Learning Algorithm . 50

3.4.1 Building CBFGs from Sets of Strings and Contexts 50

3.4.2 Monotonicity Lemmas . 53

3.4.3 Fiducial Feature Sets and Finite Context Property 54

3.4.4 Kernel and Finite Kernel Property 56

3.4.5 Learning Algorithm . 58

3.4.6 Identification in the limit result . 60

3.4.7 Examples . 62

3.5 Practical Behavior of the Algorithm 64

3.5.1 Generation of Target Context-free Grammars 64

3.5.2 Experimental Setup . 65

3.5.3 Results and Discussion . 66

3.6 Expressiveness of CBFG . 68

3.6.1 Exact CBFGs and the Chomsky Hierarchy 68

3.6.2 Inexact CBFGs . 74

3.7 Discussion and Conclusion . 75

3.7.1 Grammatical Inference . 76

3.7.2 Linguistics . 77

3.7.3 Following works . 77

Bibliography . 79

40 Chapter 3. On Learning from Strings

Context of this work

This work is a quite direct continuation of the one realized during my PhD [Eyraud,
2006]. It started when Alexander Clark came in Marseilles as an invited professor twelve
years ago.

Alexander’s research interest focusing mainly on how children acquire their na-
tive language, this chapter clearly enjoys a computational linguistic flavor. Written
in collaboration with Amaury Habrard, it is based on two publications in the peer-
reviewed proceedings of international conferences [Clark et al., 2008, 2009]. The con-
tent of this chapter is close to the article published in the Journal of Machine Learning
Research [Clark et al., 2010]: the main differences can be found in the two first sections
and the conclusion.

From a scientific point of view, it is important to notice that this work was transi-
tional in several aspects:

• it moves from a purely set-driven approach to a more complex framework where
the learner has access to both a set of examples and a membership oracle;

• it introduces two notions, namely the finite context and the finite kernel proper-
ties, that have been proven central in distributional learning since;

• it was the first time we were designing a new computational model specially shaped
for learning.

This explains the success of that work: it is the starting point of several research paths
that recently obtained important successes (I detail some of them in the conclusion of
this chapter). However, this also has a less positive side: not all ideas were mature at
the time we wrote the cited articles. For instance, the presentation of some notions is
not as clear as it can be today. Nevertheless, I chose to keep our initial formulation in
this HDR since it is my main contribution to the distributional learning from strings,
since it can be viewed as a witness of the evolution of this field, and since there is no
undeniable formulation yet.

3.1 Introduction

In natural language processing, many applications require the learning of powerful gram-
matical models. One of the central concerns of generative linguistics is the definition
of an adequate formalism that needs to satisfy two different objectives. On the one
hand, such a formalism must be expressive enough to describe natural languages. On
the other hand, it has to be sufficiently constrained to be learnable from the sort of
linguistic data available to the child learner [Chomsky, 1986]. In this context, there
are two possible research strategies. One is to take a descriptively adequate formalism

3.1. Introduction 41

such as Tree Adjoining Grammars [Joshi and Schabes, 1997] or some other mildly con-
text sensitive computational models and try to construct learning algorithms for that
class. However, such a strategy is unlikely to be successful because classes that are
so powerful are difficult to handle from a machine learning point of view. The other
approach, which we adopt in this chapter, consists in switching to a formalism that is
in some sense intrinsically learnable, and seeing whether we can represent linguistically
interesting formal languages in that representation.

Grammatical inference has obtained many learnability results for regular languages
(see for instance the work of Angluin [1987] and Carrasco and Oncina [1994]). However,
this class is not sufficient to correctly represent natural languages. The next class of
languages to consider is the class of context-free languages (CFL). Unfortunately, there
exists no learnability results for the whole class. This may be explained by the fact that
this class relies on syntactic properties instead of intrinsic properties of the language
like the notion of residuals for regular languages [Denis et al., 2004]. Thus, most of
the approaches proposed in the literature are either based on heuristics [Langley and
Stromsten, 2000, Nakamura and Matsumoto, 2005] or are theoretically well founded but
concern very restricted subclasses of context-free languages [Higuera and Oncina, 2002,
Yokomori, 2003, Eyraud et al., 2007]. Some of these approaches are built from the idea
of distributional learning1, normally attributed to Harris [1954]. The basic principle – as
we reinterpret it in our work – is to look at the set of contexts that a substring can occur
in. The distribution of a substring is the linguistic way of referring to this set of contexts.
This idea has formed the basis of many heuristic algorithms for learning context-free
grammars (see the work of Adriaans [2002] or of van Zaanen and van Noord [2014] for
instance). However, in Clark and Eyraud [2007] we presented an accurate formalization
of distributional learning. From this formulation, a provably correct algorithm for
context-free grammatical inference was given in the IPTtD paradigm (Definition 2.12 of
Chapter 2), albeit for a very limited subclass of languages, the substitutable languages
(see the formerly cited paper and the work of Yoshinaka [2008] for details). From a
more general point of view, the central insight is that it is not necessary to find the
non-terminals of the context-free grammar (CFG): it is enough to be able to represent
the congruence classes of a sufficiently large set of substrings of the language and to
be able to compute how they combine. This result was quickly extended to a PAC-
learning result under a number of different assumptions [Clark, 2006] for a larger class
of languages, and also to a family of classes of learnable languages [Yoshinaka, 2008].

Despite their theoretical bases, these results are still too limited to form the basis
for models for natural language. There are two significant limitations to this work: first
it uses a very crude measure for determining the syntactic congruence, and secondly the

1Note here that the word distributional does not refer to stochastic distributions, but to the occur-
rence of strings into contexts. The distribution of a string corresponds to all the possible contexts in
which the string can appear.

42 Chapter 3. On Learning from Strings

number of congruence classes required will in real cases be prohibitively large. If each
non-terminal corresponds to a single congruence class (the NTS languages [Boasson
and Senizergues, 1985]), then the problem may be tractable. However in general the
contexts of different non-terminals overlap enormously: for instance the contexts of
adjective phrases and noun phrases in English both contain contexts of the form (“it
is”, “.”). Problems of lexical ambiguity also cause trouble. Thus for a CFG it may
be the case that the number of congruence classes corresponding to each non-terminal
may be exponentially large (in the size of the grammar). But the situation in natural
language is even worse: the CFG itself may have an exponentially large number of non-
terminals to start off with! Conventional CFGs are simply not sufficiently expressive to
be cognitively plausible representations of natural language: to write a CFG requires
a multiplication of the numbers of non-terminals to handle phenomena like subject
verb agreement, gender features, displaced constituents, etc. This requires the use of a
formalism like GPSG (Generalized Phrase Structure Grammar) [Gazdar et al., 1985]
to write a meta-grammar — a compact way of specifying a very large CFG with richly
structured non-terminals. Thus we cannot hope to learn natural languages by learning
one congruence class at a time: it is vital to use a more structured representation.

This is the objective of the approach introduced in this chapter: for the first time, we
can bridge the gap between theoretically well founded grammatical inference methods
and the sorts of structured representations required for modeling natural languages.

In this chapter, we present a family of representations for highly structured context-
free languages and show how they can be learned. This is a chapter about learning, but
superficially it may appear to be a chapter about computational models: much of the
work is done by switching to a more tractable formalism, a move which is familiar to
many in machine learning. From a machine learning point of view, it is a commonplace
that switching to a better representation – for example, through a non-linear map into
some feature space – may make a hard problem very easy.

The contributions presented in this chapter are as follows: we present in Section 3.3
a rich grammatical formalism, which we call Contextual Binary Feature Grammars
(CBFG). This grammar formalism is defined using a set of contexts which play the role
of features with a strict semantics attached to these features. Though not completely
original, since it is closely related to a number of other formalisms such as Range
Concatenation Grammars [Boullier, 2000], it is of independent interest.

We consider then the case when the contextual features assigned to a string cor-
respond to the contexts that the string can occur in, in the language defined by the
grammar. When this property holds, we call it an exact CBFG. The crucial point here
is that for languages that can be defined by an exact CBFG, the underlying structure
of the representation relies on intrinsic properties of the language easily observable on
samples by looking at context sets.

The learning algorithm is defined in Section 3.4. We provide some conditions, both

3.2. Basic Definitions and Notations 43

on the context sets and the learning set, to ensure the learnability of languages that
can be represented by CBFG. We prove that this algorithm can identify in the limit
this restricted class of CBFGs from positive data and a membership oracle.

Some experiments are provided in Section 3.5: these experiments are intended to
demonstrate that even quite naive algorithms based on this are efficient and effective
at learning context-free languages.

Section 3.6 contains a theoretical study on the expressiveness of CBFG representa-
tions. We investigate the links with the classical Chomsky hierarchy, some well known
grammatical representations used in natural language processing. An important result
about the expressive power of the class of CBFG is obtained: it contains all the context-
free languages and some non context-free languages. This makes this representation a
good candidate for representing natural languages. However exact CBFG do not in-
clude all context-free languages but do include some non context-free ones, thus they
are orthogonal with the classic Chomsky hierarchy and can represent a large class of
languages. This expressiveness is strengthened by the fact that exact CBFG contains
most of the existing learnable classes of languages.

3.2 Basic Definitions and Notations

We will use the notation introduced in Section 2.1.2 of Chapter 2.
Nevertheless, we need additional notations and definitions: we will write the con-

catenation of two strings u and v as uv, and similarly for sets of strings. u ∈ Σ∗ is a
substring of v ∈ Σ∗ if there are strings l, r ∈ Σ∗ such that v = lur. Define Sub(u) to be
the set of non-empty substrings of u. For a set of strings S define Sub(S) =

⋃
u∈S Sub(u).

A context is an element of Σ∗×Σ∗. For a string u and a context f = (l, r) we write
f � u = lur; the insertion or wrapping operation. We extend this to sets of strings
and contexts in the natural way. We define by Con(w) = {(l, r)|∃u ∈ Σ+ : lur = w}
i.e. the set of all contexts of a word w. Similarly, for a set of strings, we define:
Con(S) =

⋃
w∈S Con(w).

We give now a formal definition of the set of contexts since it represents a notion
often used in the chapter.

Definition 3.1. The set of contexts, or context distribution, of a string u in a language
L is, CL(u) = {(l, r) ∈ Σ∗ ×Σ∗|lur ∈ L}. We will often drop the subscript where there
is no ambiguity.

Definition 3.2. Two strings u and v are syntactically congruent with respect to a
language L, denoted u ≡L v, if and only if CL(u) = CL(v).

The equivalence classes under this relation are the congruence classes of the lan-
guage.

44 Chapter 3. On Learning from Strings

After these basic definitions and notations, we recall here the definition of a context-
free grammar which is a class which is close to the language class studied in this chapter.

Definition 3.3. A context-free grammar (CFG) is a quadruple G = (Σ, V, P, S). Σ

is a finite alphabet of terminal symbols, V is a set of non terminals s.t. Σ ∩ V = ∅,
P ⊆ V × (V ∪ Σ)+ is a finite set of productions, S ∈ V is the start symbol.

We denote a production of P : N → α with N ∈ V and α ∈ (V ∪Σ)+. Following the
general definitions of Section 2.1.2, we will write uNv ⇒G uαv if there is a production
N → α in G, and denote ∗⇒G the reflexive transitive closure of ⇒G.

The language defined by a CFG G is L(G) = {w ∈ Σ∗|S ∗⇒G w}. In the following,
we will consider the CFG are represented in the Chomsky normal form (CNF), i.e.
with right hand side of production rules composed of exactly two non terminals or with
exactly one terminal symbol.

In general we will assume that λ is not a member of any language.

3.3 Contextual Binary Feature Grammars (CBFG)

Distributional learning, in our view, involves explicitly modeling the distribution of
the substrings of the language – we would like to model CL(w). Clearly a crucial
element of this distribution is the empty context (λ, λ): (λ, λ) ∈ CL(w) if and only if
w ∈ L. Our goal is to construct a representation that allows us to recursively compute
a representation of the distribution of a string w, CL(w), from the (representations of)
the distributions of its substrings.

The representation by contextual binary feature grammars relies on the inclusion
relation between sets of contexts of language L. In order to introduce this formalism,
we propose, for a start, to present some preliminary results on context inclusion. These
results will lead us to define a relevant representation for modeling these inclusion
dependencies by the notion of contextual binary feature grammars.

3.3.1 Preliminary Results about Context Inclusion

The objective of this section is to give some information about contexts that will help
to give an intuition about the representation. The basic insight behind CBFGs is that
there is a relation between the contexts of a string w and the contexts of its substrings.
This is given by the following trivial lemma:

Lemma 3.1. For any language L and for any strings u, u′, v, v′ if C(u) = C(u′) and
C(v) = C(v′), then C(uv) = C(u′v′).

Proof. We write out the proof completely as the ideas will be used later on. Suppose
we have u, v, u′, v′ that satisfy the conditions. If (l, r) ∈ C(uv), then (l, vr) ∈ C(u) and

3.3. Contextual Binary Feature Grammars (CBFG) 45

thus (l, vr) ∈ C(u′). As a consequence, (lu′, r) ∈ C(v) and then (lu′, r) ∈ C(v′) which
implies that (l, r) ∈ C(u′v′). Symmetrically, by using the same arguments, we can show
that (l, r) ∈ C(u′v′) implies (l, r) in C(uv). Thus C(uv) = C(u′v′).

This establishes that the syntactic monoid Σ∗/ ≡L is well-defined; from a learnability
point of view this means that if we want to compute the contexts of a string w we can
look for a split into two strings uv where u is congruent to u′ and v is congruent to v′;
if we can do this and we know how u′ and v′ combine, then we know that the contexts
of uv will be exactly the contexts of u′v′. There is also a slightly stronger result:

Lemma 3.2. For any language L and for any strings u, u′, v, v′ if C(u) ⊆ C(u′) and
C(v) ⊆ C(v′), then C(uv) ⊆ C(u′v′).

Proof. See proof of Lemma 3.1.

C(u) ⊆ C(u′) means that we can replace any occurrence in a sentence of u with a
u′, without affecting the grammaticality, but not necessarily vice versa. Note that none
of these strings need to correspond to non-terminals: this is valid for any fragment of a
sentence.

We will give a simplified example from English syntax: the pronoun “it” can occur
everywhere that the pronoun “him” can, but not vice versa2. Thus given a sentence
“I gave him away”, we can substitute “him” for "it", to get the grammatical sentence
“I gave it away”, but we cannot reverse the process. For example, given the sentence
“it is raining”, we cannot substitute “him” for “it”, as we will get the ungrammatical
sentence “him is raining”. Thus we observe C(him) (C(it).

Looking at Lemma 3.2 we can also say that, if we have some finite set of strings K,
where we know the contexts, then:

Corollary 3.3. For any language L and for any set of strings K, we have:

C(w) ⊇
⋃
u′,v′:
u′v′=w

⋃
u∈K:

C(u)⊆C(u′)

⋃
v∈K:

C(v)⊆C(v′)

C(uv).

This is the basis of our representation: a word w is characterized by its set of con-
texts. We can compute the representation of w, from the representation of its parts
u′, v′, by looking at all of the other matching strings u and v where we understand
how they combine (with subset inclusion). Rather than representing just the congru-
ence classes, we will represent the lattice structure of the set of contexts using subset
inclusion; sometimes called Dobrušin-domination [Marcus, 1967].

The key relationships are given by context set inclusion. Contextual binary feature
grammars allow a proper definition of the combination of context inclusion.

2This example does not account for a number of syntactic and semantic phenomena, particularly
the distribution of reflexive anaphora.

46 Chapter 3. On Learning from Strings

3.3.2 Contextual Binary Feature Grammars

The formalism of contextual binary feature grammars has some resemblance with Gener-
alized Phrase Structure Grammar (GPSG) [Gazdar et al., 1985], and most importantly
the class of Range Concatenation Grammars (RCG) [Boullier, 2000]; these relationships
will be detailed in Section 3.6. As we will see later, note that our formalism defines
a class orthogonal to the class of context-free grammars, indeed the use of subsets
inclusion allows to model non context-free languages while not all the context-free lan-
guages can be represented. It is worth noticing also that this formalism is not directly
compatible with our notion of generative grammars though only small modifications of
Definition 2.1 allow the compatibility.

Definition 3.4. A Contextual Binary Feature Grammar (CBFG) G is a tuple
〈F, P, PL,Σ〉:

• F is a finite set of contexts, (i.e. F ⊂ Σ∗ × Σ∗) called features, where we write
E = 2F for the power set of F defining the categories of the grammar, and where
(λ, λ) ∈ F .

• P ⊆ E×E×E is a finite set of productions that we write x→ yz where x, y, z ∈ E,

• PL ⊆ E × Σ is a set of lexical rules, written x→ a,

• Σ denotes the alphabet.

Given a CBFG G we can recursively define a function fG from Σ∗ → E as follows:

fG(λ) = ∅ (3.1)

fG(w) =
⋃

(x→w)∈PL

x iff |w| = 1 (3.2)

fG(w) =
⋃

u,v:uv=w

⋃
x→yz∈P :
y⊆fG(u)∧
z⊆fG(v)

x iff |w| > 1. (3.3)

Given a CBFG G and a string w it is possible to compute fG(w) in time
O(|F ||P ||w|3) using standard dynamic programming techniques. A straightforward
modification of the Cocke-Kasami-Younger algorithm for parsing Context-Free Gram-
mars will suffice.

Thus a CBFG, G, defines for every string u a set of contexts fG(u): this will be a
representation of the context distribution. fG(u) will be a subset of F : we will want
fG(u) to approximate CL(u)∩F . The natural way to define the membership of a string
w in L(G) is to have the context (λ, λ) ∈ fG(w).

3.3. Contextual Binary Feature Grammars (CBFG) 47

Definition 3.5. The language defined by a CBFG G is the set of all strings that are
assigned the empty context: L(G) = {u|(λ, λ) ∈ fG(u)}.

We give here more explanation about the function fG. A rule x→ yz is applied to
analyze a string w if there is a split or cut of the string w into two strings u and v such
that uv = w s.t. y ⊆ fG(u) and z ⊆ fG(v) — recall that y and z are sets of features.

One way of viewing a production x → yz is as an implication: if two strings u
and v are such that they have the features y and z, then their concatenation will have
the features x. As features correspond to contexts, intuitively, the relation given by the
production rule is linked with Lemma 3.2: x is included in the set of features of w = uv.
From this relationship, for any (l, r) ∈ x we have lwr ∈ L(G).

The complete computation of fG is then justified by Corollary 3.3: fG(w) defines all
the possible contextual features associated by G to w with all the possible cuts uv = w

(i.e. all the possible derivations).
Note the relation between the third clause above and Corollary 3.3. In general we

will apply more than one production at each step of the analysis.
We will discuss the relation between this class and the class of CFGs in some detail

in Section 3.6. For the moment, we will just make the following points. First, the
representation is quite close to that of a CFG where the non-terminals correspond to
sets of contexts (subsets of F). There are, however, crucial differences: the very fact
that they are represented by sets means that the non-terminals are no longer atomic
symbols but rather structures; the formalism can combine different rules together at
each step. Secondly, the function fG can combine different parsing paths. It is not the
case that every feature assigned to w must come from the same split of w into u and
v. Rather some features could come from one split, and some from another: these two
sets of features can be combined in a single derivation even though they come from
different parsings (which corresponds to different derivation trees in CFG). It is this
property that takes the class of languages out of the class of context-free languages. In
the special case where all of the productions involve only singleton sets then this will
reduce to a CFG — the non-terminals will correspond to the individual features, and
fG(w) will correspond to the set of non-terminals that can derive the string w.

Clearly by the definition of L(G) we are forcing a correspondence between the occur-
rence of the context (λ, λ) in CL(w) and the occurrence of the feature (λ, λ) in fG(w).
But ideally we can also require that fG defines exactly the possible features that can
be associated to a given string according to the underlying language. Indeed, we are
interested in cases where there is a correspondence between the language theoretic inter-
pretation of a context, and the occurrence of that context as a feature in the grammar:
in this case the features will be observable which will lead to learnability.

This is formalized via the following definitions.

Definition 3.6. Given a finite set of contexts F = {(l1, r1), . . . , (ln, rn)} and a language

48 Chapter 3. On Learning from Strings

L we can define the context feature function FL : Σ∗ → 2F which is just the function
u 7→ {(l, r) ∈ F |lur ∈ L} = CL(u) ∩ F .

Using this definition, we now need a correspondence between the language theoretic
context feature function FL and the representation in our CBFG, fG.

Definition 3.7. A CBFG G is exact if for all u ∈ Σ∗, fG(u) = FL(G)(u).

Example. Let L = {anbn|n > 0}. Let 〈F, P, PL,Σ〉 a CBFG s.t.
F = {(λ, λ), (a, λ), (aab, λ), (λ, b), (λ, abb)}. The lexical productions in PL are:
{(λ, b), (λ, abb)} → a and {(a, λ), (aab, λ)} → b. Note that these lexical productions
are of the form x → a, where x is a subset of F , that is to say, a set of features. The
rule {(λ, b), (λ, abb)} → a therefore says that the letter a will be assigned both of the
features/contexts (λ, b) and (λ, abb). Since this is the only lexical rule for a, we will have
that fG(a) = {(λ, b), (λ, abb)}. The productions in P , denoted by x→ yz, where x, y, z
are again sets of contexts, are defined as: {(λ, λ)} → {(λ, b)}{(aab, λ)}, {(λ, λ)} →
{(λ, abb)}{(a, λ)}, {(λ, b)} → {(λ, abb)}{(λ, λ)}, {(a, λ)} → {(λ, λ)}{(aab, λ)}.

In each of these rules, in this trivial case, the sets of contexts are singleton sets.
In general, these productions may involve sets that have more than one element. This
defines an exact CBFG for L. Indeed, the grammar assigns only (λ, λ) to the elements of
the language; for all elements w of {anbn+1 : n > 1} we have fG(w) = {(a, λ)} = FL(w)

and for all all elements w of {an+1bn : n > 1}, fG(w) = {(λ, b)} = FL(w); The lexical
rules assign correct contexts to each letter.

Exact CBFGs are a more limited formalism than CBFGs themselves; without any
limits on the interpretation of the features, we can define a class of formalisms that is
equal to the class of Conjunctive Grammars (see Section 3.6.2.3). However, exactness is
an important property because it allows to associate the intrinsic structure of a language
to the structure of the representation. Contexts are easily observable from a sample
and moreover it is only when the features correspond to the contexts that distributional
learning algorithms can infer the structure of the language.

3.3.3 A Parsing Example

To clarify the relationship with CFG parsing, we will give a simple worked example.
Consider the CBFG G = 〈{(λ, λ), (aab, λ), (λ, b), (λ, abb), (a, λ)}, P, PL, {a, b}〉 with

PL = { {(λ, b), (λ, abb)} → a,

{(a, λ), (aab, λ)} → b }.
and P = { {(λ, λ)} → {(λ, b)}{(aab, λ)},

{(λ, λ)} → {(λ, abb)}{(a, λ)},
{(λ, b)} → {(λ, abb)}{(λ, λ)},
{(a, λ)} → {(λ, λ)}{(aab, λ)} }.

If we want to parse a string w the usual way is to have a bottom-up approach. This
means that we recursively compute the fG function on the substrings of w in order to
check whether (λ, λ) belongs to fG(w).

3.3. Contextual Binary Feature Grammars (CBFG) 49

a a b b

fG

{(λ,b),(λ,abb)} {(λ,b),(λ,abb)} {(a,λ),(aab,λ)} {(a,λ),(aab,λ)}

fG fG fG

Rule: (λ,λ) → (λ,b) (aab,λ)

fG(ab) ⊇ {(λ,λ)}

Rule: (a,λ) → (λ,λ) (aab,λ)

fG(abb) ⊇ {(a,λ)}

Rule: (λ,λ) → (λ,abb) (a,λ)

fG(aabb) ⊇ {(λ,λ)}

f G
{(λ,b),(λ,abb)} {(λ,b),(λ,abb)} {(a,λ),(aab,λ)} {(a,λ),(aab,λ)}

f G f G f G

Rule: (λ,λ) → (λ,abb) (a,λ)

fG(ab) ⊇ {(λ,λ)}

Rule: (λ,b) → (λ,abb) (λ,λ)

fG(aab) ⊇ {(λ,b)}

Rule: (λ,λ) → (λ,b) (aab,λ)

fG(aabb) ⊇ {(λ,λ)}

Figure 3.1: The two derivations to obtain (λ, λ) in fG(aabb) in the grammar G.

For example, suppose w = aabb. Figure 3.1 graphically gives the main steps of
the computation of fG(aabb). Basically there are two ways to split aabb that allow
the derivation of the empty context: aab|b and a|abb. The first one corresponds to
the top part of the figure while the second one is drawn at the bottom. We can see
for instance that the empty context belongs to fG(ab) thanks to the rule {(λ, λ)} →
{(λ, abb)}{(a, λ)}: {(λ, abb)} ⊆ fG(a) and {(a, λ)} ⊆ fG(b). But for symmetrical rea-
sons the result can also be obtained using the rule {(λ, λ)} → {(λ, b)}{(aab, λ)}.

As we trivially have fG(aa) = fG(bb) = ∅, since no right-hand side contains the
concatenation of the same two features, an induction proof can be written to show that
(λ, λ) ∈ fG(w)⇔ w ∈ {anbn : n > 0}.

This is a simple example that illustrates the parsing of a string given a CBFG.
This example does not fully express the power of CBFG since no element of the right
hand side of a rule is composed of more than one context. A more complex example,
corresponding to a context-sensitive language, will be presented in Section 3.6.1.3.

50 Chapter 3. On Learning from Strings

We stop here the presentation of the CBFG formalism and we present our learning
algorithm in the next section. However, if the reader wishes to become more familiar
with CBFGs a study on their expressiveness is provided in Section 3.6.

3.4 Learning Algorithm

We have carefully defined the representation so that the inference algorithm will be
almost trivial. Given a set of strings, and a set of contexts, we can simply write down
a CBFG that will approximate a particular language.

3.4.1 Building CBFGs from Sets of Strings and Contexts

Definition 3.8. Let L be a language, F be a finite set of contexts such that (λ, λ) ∈ F ,
K a finite set of strings, PL = {FL(u) → u|u ∈ K ∧ |u| = 1} and P = {FL(uv) →
FL(u)FL(v)|u, v, uv ∈ K}. We define G0(K,L, F) as the CBFG 〈F, P, PL,Σ〉.

Often K will be closed under substrings: i.e. Sub(K) = K. This grammar is a
CBFG, since K and F are finite, and so P and PL are too by construction. In general
it will not be exact.

We will call K here the basis for the language. The set of productions is defined
merely by observation: we take the set of all productions that we observe as the con-
catenation of elements of the small set K.

Let us explain the construction in more detail. PL is the set of lexical productions –
analogous to rules of the form N → a in a CFG in Chomsky normal form. These rules
just assign to the terminal symbols their observed distribution – this will obviously be
correct in that fG(a) = FL(a). P is the interesting set of productions: these allow us to
predict the features of a string uv from the features of its part u and v. To construct P
we take all triples of strings u, v, uv that are in our finite set K. We observe that u has
the contexts FL(u) and v has the set of contexts FL(v): our rule then states that we
can combine any string that has all of the contexts in FL(u) together with any string
that has the contexts in FL(v) and the result will have all of the contexts in FL(uv).

We will now look at a simple example. Let L = {anbn | n > 0}, F , the set of
features is {(λ, λ), (a, λ), (λ, b)} and K, the basis, is {a, b, ab, aa, aab}. For each of the
elements of K we can compute the set of features that it has:

• FL(a) is just {(λ, b)} – this is the only one of the three contexts in F such that
f � a ∈ L.

• FL(b) = {(a, λ)}

• FL(aa) = ∅

• FL(ab) = {(λ, λ)}

3.4. Learning Algorithm 51

• FL(aab) = {(λ, b)}.

G0 will therefore have the following lexical productions PL = {(λ, b)} → a,
{(a, λ)} → b. We can now consider the productions in P . Looking at K we will see that
there are only four possible triples of strings of the form uv, u, v: these are (aa, a, a),
(ab, a, b), (aab, aa, b) and (aab, a, ab). Each of these will give rise to an element of P :

• The rule given by ab = a ◦ b: {(λ, λ)} → {(λ, b)}{(a, λ)},

• aa = a ◦ a gives ∅ → {(λ, b)}{(λ, b)},

• aab = aa ◦ b gives {(λ, b)} → ∅{(a, λ)},

• aab = a ◦ ab gives {(λ, b)} → {(λ, b)}{(λ, λ)}.

Given K,F and a membership oracle for L we can thus simply write down a
CBFG. However, in this case, the language L(G0) is not the same as L; moreover, the
resulting grammar is not exact. Applying the rules for the recursive computation of
fG, we can see that fG0(aab) = {(λ, b)} and fG0(abb) = fG0(aabb) = {(λ, b), (λ, λ)}
but FL(G0)(abb) = {(a, λ), (λ, b), (λ, λ)} and thus G0 is not exact. The problem
here is caused by the fact that the production {(λ, b)} → ∅{(a, λ)} allows any
string to occur in the place specified by the ∅: indeed since ∅ ⊆ fG0(aab) and
{(a, λ)} ⊆ fG0(b) the rule holds for aabb and thus {(λ, b)} ⊆ fG0(aabb). This is actually
caused by the fact that there are no contexts in F that correspond to the string aa in K.

Fixing L for the moment, clearly the language defined depends on two factors: the
set of strings K and the set of features F . Given K and F , and access to a membership
oracle, we can write down a CBFG with almost no computation, but we still have the
problem of finding suitable K and F – it might be that searching for exactly the right
combination of K and F is intractably hard. It turns out that it is also very easy to
find suitable sets.

In the next section we will establish two important lemmas that show that the
search for K and F is fundamentally tractable: first, that as K increases the language
defined by G0(K,L, F) will increase, and secondly that as F increases the language
will decrease.

Let us consider one example that illustrates these properties. Consider the language
L = {anb | n ≥ 0} ∪ {bam | m ≥ 0} ∪ {a}.

First, let K = {a, b, ab} and F = {(λ, λ)}; then, by the definition of G0, we have
the following productions:

• {(λ, λ)} → a

52 Chapter 3. On Learning from Strings

• {(λ, λ)} → b

• {(λ, λ)} → {(λ, λ)}{(λ, λ)}.

It is easy to see that L(G0) = Σ+.
Now, suppose that F = {(λ, λ), (λ, b)} with K unchanged; then, by construction G0

will have the following productions:

• {(λ, λ), (λ, b)} → a,

• {(λ, λ)} → b,

• {(λ, λ)} → {(λ, λ), (λ, b)}{(λ, λ)}.

The language defined by G0 contains anb and also an since {(λ, λ)} ⊂ {(λ, λ), (λ, b)}
allowing the third production to accept strings ending with an a. Thus, the language
has been reduced such that L(G0) = {anb | n ≥ 0} ∪ {am | m ≥ 0}.

We continue by leaving F = {(λ, λ), (λ, b)} and we enlarge K such that K =

{a, b, ab, ba}. The productions in G0 are:

• {(λ, λ), (λ, b)} → a,

• {(λ, λ)} → b,

• {(λ, λ)} → {(λ, λ), (λ, b)}{(λ, λ)}; the rule given by ab = a ◦ b,

• {(λ, λ)} → {(λ, λ)}{(λ, λ), (λ, b)}; the rule given by ba = b ◦ a.

The addition of the last rule allows the grammar to recognize ban and it can be
easily shown that by a combination of the last two productions anbam belongs to
the language defined by the grammar. Then, L(G0) has been increased such that
L(G0) = {anbak | n, k ≥ 0} ∪ {am | m ≥ 0}.

In this example, the addition of (λ, b), (a, λ) and (λ, a) to F and the addition of aab
and baa to K will then define the correct language. In fact this illustrates one principle
of our approach: in the infinite data limit, the construction G0 will define the correct
language. In the following lemma we abuse notation and use G0 for when we have
infinite K, and F : in this lemma we let K be the set of all non-empty strings and we
let F be the set of all possible contexts (Σ∗ × Σ∗). Recall that in this case for every
string w CL(w) = FL(w).

Lemma 3.4. For any language L, let G = G0(Σ
+, L,Σ∗×Σ∗). For all w ∈ Σ+ we have

fG(w) = CL(w) and therefore L(G) = L.

3.4. Learning Algorithm 53

Proof. By induction on the length of w. If |w| = 1, and w = a then there is a lexical
production CL(a)→ a and by the definition of fG(a) = CL(a). Suppose this is true for
all w with |w| ≤ k. Let w be some string of length k + 1. Consider any split of w into
u, v such that w = uv. fG(w) is the union over all these splits of a function. We will
show that every such split will give the same result of CL(w). By inductive hypothesis
fG(u) = CL(u), fG(v) = CL(v). Since u, v, w are in K = Σ+ we will also have an
element of P of the form CL(w)→ CL(u)CL(v), so we know that fG(w) ⊇ FL(w). We
now show that fG will not predict any extra contexts. Consider every production in P ,
FL(u′v′) → FL(u′)FL(v′), that applies to u, v, i.e. with FL(u′) ⊆ fG(u) = CL(u) and
FL(v′) ⊆ fG(v) = CL(v). Lemma 3.2 shows that in this case FL(u′v′) ⊆ FL(w) and
thus we deduce that fG(w) ⊆ FL(w), which establishes the lemma.

Informally if we take K to be every string and F to be every context, then we can
accurately define any language. Of course, we are just interested in those cases where
this can be defined finitely and we have a CBFG, in which case L will be decidable, but
this infinite limit is a good check that the construction is sound.

3.4.2 Monotonicity Lemmas

We now prove two lemmas that show that the size of the language, and more particu-
larly the features predicted will increase or decrease monotonically as a function of the
basis K, and the feature set F , respectively. In fact, they give also a framework for
approaching a target language from K and F .

Lemma 3.5. Suppose we have two CBFGs defined by G = G0(K,L, F) and G′ =

G0(K,L, F
′) where F ⊆ F ′. Then for all u, fG(u) ⊇ fG′(u) ∩ F .

Proof. Let G′ have a set of productions P ′, P ′L, and G have a set of productions P, PL.
Clearly if x → yz ∈ P ′ then x ∩ F → (y ∩ F)(z ∩ F) is in P by the definition of G0,
and likewise for PL, P ′L. By induction on |u| we can show that any feature in fG′(u)∩F
will be in fG(u). The base case is trivial since F ′L(a) ∩ F = FL(a); if it is true for all
strings up to length k, then if f ∈ fG′(u) ∩ F ; there must be a production in F ′ with
f on the head. By the inductive hypothesis, the right hand sides of the corresponding
production in P will be triggered, and so f must be in fG(u).

Corollary 3.6. Suppose we have two CBFGs defined by G = G0(K,L, F) and G′ =

G0(K,L, F
′) where F ⊆ F ′; then L(G) ⊇ L(G′).

Proof. It is sufficient to remark that if u ∈ L(G′) then (λ, λ) ∈ fG′(u) ⊆ fG(u) and
thus u ∈ L(G).

Conversely, we can show that as we increase K, the language and the map fG will
increase. This is addressed by the next lemma.

54 Chapter 3. On Learning from Strings

Lemma 3.7. Suppose we have two CBFGs defined by G = G0(K,L, F) and G′ =

G0(K
′, L, F) where K ⊆ K ′. Then for all u, fG0(K,L,F)(u) ⊆ fG0(K′,L,F)(u).

Proof. Clearly the sets of productions of G0(K,L, F) will be a subset of the set of
productions of G0(K

′, L, F), and so anything that can be derived by the first can be
derived by the second, again by induction on the length of the string.

A simple result is that when K contains all of the substrings of a word, then
G0(K,L, F) will generate all of the correct features for this word.

Lemma 3.8. For any string w, if Sub(w) ⊂ K, and let G = G0(K,L, F), then FL(w) ⊆
fG(w).

Proof. By recursion on the size of w. Let G = G0(K,L, F) = 〈F, P, PL,Σ〉. First,
notice that if w is of length 1 then we have FL(w) → w in PL and thus the lemma
holds. Then suppose that |w| = k ≥ 2. Let u and v in Σ+ be such that w = uv. As
Sub(w) ⊂ K we have u, v in K. Therefore the rule FL(w) → FL(u)FL(v) belongs to
P . As |u| < |w| and |v| < |w|, by recursion we get FL(u) ⊆ fG(u) and FL(v) ⊆ fG(v).
Thus the rule can be applied and then FL(w) ⊆ fG(w).

In particular if w ∈ L, and Sub(w) ⊆ K, then w ∈ L(G). This means that we can
easily increase the language defined by G just by adding Sub(w) to K. In general we do
not need to add every element of Sub(w) – it is enough to have one binary bracketing.

To establish learnability, we need to prove that for a target language L, if we have a
sufficiently large F then L(G0(K,L, F)) will be contained within L and that if we have
a sufficiently large K, then L(G0(K,L, F)) will contain L.

3.4.3 Fiducial Feature Sets and Finite Context Property

We need to be able to prove that for anyK if we have enough features then the language
defined will be included within the target language L. We formalize the idea of having
enough features in the following way:

Definition 3.9. For a language L and a string u, a set of features F is fiducial on u if
for all v ∈ Σ∗, FL(u) ⊆ FL(v) implies CL(u) ⊆ CL(v).

Note that if F is fiducial on u and F ⊂ F ′ then F ′ is fiducial on u. Therefore we
can naturally extend this to sets of strings.

Definition 3.10. For a language L and a set of strings K, a set of features F is fiducial
on K if for all u ∈ K, F is fiducial on u.

Clearly, for any string w, CL(w) will be fiducial on w; but this is vacuous – we
are interested in cases where there is a finite set of contexts which is fiducial for w,

3.4. Learning Algorithm 55

but where CL(w) is infinite. If u and v are both in K then having the same features
means they are syntactically congruent. However if two strings, neither of which are
in K, have the same features this does not mean they are necessarily congruent (for
instance if FL(v) = FL(v′) = ∅). For non finite state languages, the set of congruence
classes will be infinite, and thus we cannot have a finite fiducial set for the set of all
strings in Sub(L), but we can have a feature set that is correct for a finite subset of
strings, or more generally for an infinite set of strings, if they fall into a finite number
of congruence classes.

Let us consider our running example L = {anbn|n > 0}. Take the string ab. CL(ab)

is infinite and contains contexts of the form (λ, λ), (a, b), (aa, bb) and so on. Consider
a set with just one of these contexts, say F = {(a, b)}. This set is clearly fiducial for
ab, since the only strings that will have this context are those that are congruent to
ab. Consider now the string aab; clearly {(λ, b)} is fiducial for aab, even though the
string a, which is not congruent to aab, also occurs in this context. Indeed, this does
not violate fiduciality since CL(a) ⊃ CL(aab). However, looking at string a, {(λ, b)} is
not fiducial, since aab has this context but does not include all the contexts of a such
as, for example, (λ, abb).

In these trivial examples, a context set of cardinality one is sufficient to be
fiducial, but this is not the case in general. Consider the finite language L =

{ab, ac, db, ec, dx, ey}, and the string a. It has two contexts (λ, b) and (λ, c) neither
of which is fiducial for a on its own. However, the set of both contexts is: {(λ, b), (λ, c)}
is fiducial for a.

We now define the finite context property, which is one of the two conditions that
languages must satisfy to be learnable in this model; this condition is a purely language
theoretic property.

Definition 3.11. A language L has the Finite Context Property (FCP) if every string
has a finite fiducial feature set.

Clearly if L has the FCP, then any finite set of substrings, K, has a finite fiducial
feature set which will be the union of the finite fiducial feature sets for each element of
K. If u 6∈ Sub(L) then any set of features is fiducial since CL(u) = ∅.

We note here that all regular languages have the FCP. We refer the reader to the
Section 3.6.1.1 about CBFG and regular languages where the Lemma 3.20 and the
associated construction proves this claim.

We can now state the most important lemma: this lemma links up the definition of
the feature map in a CBFG, with the fiducial set of features to show that only correct
features will be assigned to substrings by the grammar. It states that the features
assigned by the grammar will correspond to the language theoretic interpretation of
them as contexts.

56 Chapter 3. On Learning from Strings

Lemma 3.9. For any language L, given a set of strings K and a set of features F , let
G = G0(K,L, F). If F is fiducial on K, then for all w ∈ Σ∗ fG(w) ⊆ FL(w).

Proof. We proceed by induction on length of the string. Base case: strings of length
1. fG(w) will be the set of observed contexts of w, and since we have observed these
contexts, they must be in the language. Inductive step: let w a string of length k.

Take a feature f on fG(w); by definition this must come from some production
x→ yz and a split u, v of w. The production must be from some elements of K, u′, v′

and u′v′ such that y = FL(u′), z = FL(v′) and x = FL(u′v′). If the production applies
this means that FL(u′) = y ⊆ fG(u) ⊆ FL(u) (by inductive hypothesis), and similarly
FL(v′) ⊆ FL(v). By fiduciality of F this means that C(u′) ⊆ C(u) and C(v′) ⊆ C(v). So
by Lemma 3.2 C(u′v′) ⊆ C(uv). Since f ∈ C(u′v′) then f ∈ C(uv) = C(w). Therefore,
since f ∈ F and C(w) ∩ F = FL(w), f ∈ FL(w), and therefore fG(w) ⊆ FL(w).

Corollary 3.10. If F is fiducial on K then L(G0(K,F,L)) ⊆ L.

Therefore for any finite set K from an FCP language, we can find a set of features
so that the language defined by those features on K is not too big.

3.4.4 Kernel and Finite Kernel Property

We will now show a complementary result, namely that for a sufficiently large K the
language defined by G0 will include the target language. We will start by formalizing
the idea that a set K is large enough, by defining the idea of a kernel.

Definition 3.12. A finite set K ⊆ Σ∗ is a kernel for a language L, if for any set of
features F , L(G0(K,F,L)) ⊇ L.

Consider again the language L = {anbn|n ≥ 0}. The set K = {a, b, ab} is not a
kernel, since if we have a large enough set of features, then the language defined will
only be {ab} which is a proper subset of L. However K = {a, b, ab, aab, abb, aabb} is a
kernel: no matter how large a set of features we have the language defined will always
include L. Consider a language L′ = L ∪ {b16}. In this case, a kernel for L′ must
include, as well as a kernel for L, some set of substrings of b16: it is enough to have
b16, b8, b4, bb, b.

To prove that a set is a kernel, it suffices to show that if we consider all the possible
features for building the grammar, we will contain the target language; any smaller set
of features defines then a larger language. In our case, we can take the infinite set of all
contexts and define productions based on the congruence classes. If F is the set of all
contexts then we have FL(u) = CL(u), thus the productions will be exactly of the form
C(uv) → C(u)C(v). This is a slight abuse of notation since feature sets are normally
finite.

3.4. Learning Algorithm 57

Lemma 3.11. Let F = Σ∗ × Σ∗; if L(G0(K,L, F)) ⊇ L then K is a kernel.

Proof. By monotonicity of F : any finite feature set will be a subset of F .

Not all context-free languages will have a finite kernel. For example L = {a+} ∪
{anbm|n < m} is clearly context-free, but does not have a finite kernel. Assume that
the set K contains all strings of length less than or equal to k. Assume w.l.o.g. that
the fiducial set of features for K includes all features (λ, bi), where i ≤ k+ 1. Consider
the rules of the form FL(ak) → FL(aj)FL(ak−j); we can see that no matter how large
k is, the derived CBFG will under-generalize as ak is not congruent to ak−1.

Definition 3.13. A context-free grammar GT = 〈V, S, P,Σ〉 has the Finite Kernel
Property (FKP) iff for every non-terminal N ∈ V there is a finite set of strings K(N)

such that a ∈ K(N) if a ∈ Σ and N → a ∈ P and such that for all k ∈ K(N), N
∗⇒ k

and where for every string w ∈ Σ∗ such that N ∗⇒ w there is a string k ∈ K(N) such
that C(k) ⊆ C(w). A CFL L has the FKP, if there is a grammar in CNF for it with
the FKP.

Notice that all regular languages have the FKP since they have a finite number of
congruence classes.

Lemma 3.12. Any context-free language with the FKP has a finite kernel.

Proof. Let GT = 〈V, S, P,Σ〉 be such a CNF CFG with the FKP. Define

K(GT) =
⋃
N∈V

(
K(N) ∪

⋃
X→MN∈P

K(M)K(N)

)
. (3.4)

We claim that K(GT) is a kernel. Assume that F = Σ∗×Σ∗ and let G be such that
G = G0(K(GT), L(GT), F) = 〈F, (λ, λ), P, PL,Σ〉.

We will show, by induction on the length of derivation of w in GT , that for all N,w if
N
∗⇒ w then there is a k in K(N) such that fG(w) ⊇ C(k). If length of derivation is 1,

then this is true since |w| = 1 and thus w ∈ K(N): therefore C(w)→ w ∈ PL. Suppose
it is true for all derivations of length less than j. Take a derivation of length j; say N ∗⇒
w. There must be a production in GT of the form N → PQ, where P ⇒∗ u and Q⇒∗ v,
and w = uv. By inductive hypothesis; we have fG(u) ⊇ C(ku) and fG(v) ⊇ C(kv). By
construction kukv ∈ K(GT) and then there will be a rule C(kukv)→ C(ku)C(kv) in P .
Therefore fG(uv) ⊇ C(kukv). Since N ∗⇒ kukv there must be some kuv ∈ K(N) such
that C(kuv) ⊆ C(kukv). Therefore fG(w) ⊇ C(kukv) ⊇ C(kuv).

Now we can see that if w ∈ L, then S
∗⇒ w, then there is a k ∈ K(S) such that

fG(w) ⊇ C(k) and S ∗⇒ k, therefore (λ, λ) ∈ fG(w) since (λ, λ) ∈ C(k), thus w ∈ L(G)

and therefore K is a kernel.

58 Chapter 3. On Learning from Strings

3.4.5 Learning Algorithm

Before we present the algorithm, we will discuss the learning model that we use. The
class of languages that we will learn is superfinite and thus we cannot get a positive
data only identification in the limit result [Gold, 1967]. The ultimate goal is to model
the learning of natural languages, where negative data - that is, strings that are not
in the target language, or equivalence queries are generally not available or are compu-
tationally impossible. Accordingly, we have decided to use the framework of positive
data together with membership queries. The presented algorithm runs in time polyno-
mial in the size of the sample S. We already discussed in Chapter 2 how this is not a
strong enough result and the difficulties to have efficiency constraint to such a learning
paradigm, in particular for representations, such as the ones in this chapter, that are
powerful enough to define languages whose shortest strings are exponentially long. Ac-
cordingly we do not require in this model a polynomial dependence on the size of the
representation. We note that the situation is unsatisfactory3, but we do not intend to
propose a solution in this chapter. We merely point out that the algorithm is genuinely
polynomial and processes all of the data in the sample without “delaying tricks” of the
type discussed by Pitt [1989].

Definition 3.14. A class of languages L is identifiable in the limit from positive data
and a membership oracle with polynomial time and queries if and only if there exist
two polynomials p(), q() and an algorithm A such that for all language L ∈ L, for all
texts S of L:

• A returns a representation G = A(Sn) in time p(||Sn||).

• A asks at most q(||Sn||) queries to build A(Sn).

• there exists an index N such that for all n ≥ N : A(Sn) = A(SN) and L(A(SN)) =

L.

Before we present the algorithm we hope that it is intuitively obvious how the
approach will work. Figure 3.2 diagrammatically shows the relationship between K

and F . When we have a large enough K, we will be to the right of the vertical line;
when we have enough features for that K we will be above the diagonal line. Thus the
basis of the algorithm is to move to the right, until we have enough data, and then to
move up vertically, increasing the feature set until we have a fiducial set.

We can now define our learning algorithm in Algorithm 3.1. Informally, D is the
list of all strings that have been seen so far and Gn is the current grammar obtained
with the first n strings of D. The algorithm uses two tests: one test is just to determine
if the current hypothesis under-generalizes. This is trivial, since we have a positive

3A recent work from Yoshinaka [2015] proposed a set-driven polynomial approach that extends the
one presented here. We will discuss this work in the last section of this HDR.

3.4. Learning Algorithm 59

K

F

K0

Overgeneral

Correct

Undergeneral

Wrong

Figure 3.2: The relationship between K and F : The diagonal line is the line of fidu-
ciality: above this line means that F is fiducial on K. K0 is a kernel for the language.

presentation of the data, and so eventually we will be presented with a string in L \
L(Gn). In this case we need to increase K; we accordingly increase K to the set of all
substrings that we have observed so far. The second test is a bit more delicate. We
want to detect if our algorithm overgeneralizes. This requires us to search through a
polynomially bounded set of strings looking for a string that is in L(Gn)\L. An obvious
candidate set is Con(D)� Sub(D); but though we conjecture that this is adequate, we
have not yet been able to prove that is correct, as it might be that the over-generated
string does not lie in Con(L)� Sub(L).

Here we use a slightly stricter criterion: we try to detect whether F is fiducial for K:
we search through a polynomially bounded set of strings, Sub(D), to find a violation
of the fiduciality condition. If we find such a violation, then we know that F is not
fiducial for K, and so we increase F to the set of all contexts that we have seen so far,
Con(D).

In Algorithm 3.1, G0(K,O, F) denotes the same construction as G0(K,L, F), except
that we use membership queries with the oracle O to compute FL for each element in
K. We give the identification in the limit version of the algorithm, i.e. that admits an
infinite positive presentation of strings in input.

Theorem 3.13. Algorithm 3.1 runs in polynomial time in the size of the sample, and
makes a polynomial number of calls to the membership oracle.

Proof. The value of D will just be the set of observed strings; Sub(D) and Con(D) are

60 Chapter 3. On Learning from Strings

Algorithm 3.1: CBFG learning algorithm IIL
Data: A sequence of strings S = {w1, w2 . . . , }, membership oracle O
Result: A sequence of CBFGs G1, G2, . . .

K ← ∅ ; D ← ∅ ; F ← {(λ, λ)} ; G = G0(K,O, F) ;
for wi do

D ← D ∪ {wi}; C ← Con(D); S ← Sub(D);
if ∃w ∈ D \ L(G) then

K ← S ; F ← C ;
else if ∃v ∈ S, u ∈ K, f ∈ C such that FL(u) ⊆ FL(v) and f � u ∈ L but
f � v 6∈ L then
F ← C ;

G = G0(K,O, F) ;
Output Gi = G ;

both polynomially bounded by the size of the sample, and therefore so are |K| and |F |.
Therefore the number of calls to the oracle is clearly polynomial, as it is bounded by
|K||F |. Computing G0 is also polynomial, since |P | ≤ |K|2, and all strings involved are
in Sub(D).

3.4.6 Identification in the limit result

In the following, we consider the class of context-free languages having the FCP and the
FKP, represented by CBFG. Kn denotes the value of K at the nth loop, and similarly
for F , D.

Definition 3.15. LCFG is the class of all context-free languages that satisfy the FCP
and the FKP.

In what follows we assume that L is an element of this class, and that w1, . . . , wn, . . .

is a infinite presentation of the language. The proof is straightforward and merely
requires an analysis of a few cases. We will proceed as follows: there are 4 states that
the model can be in, that correspond to the four regions of the diagram in Figure 3.2.

1. K is a kernel and F is fiducial for K; in this case the model has converged to the
correct answer. This is the region labeled correct in Figure 3.2.

2. K is a kernel and F is not fiducial for K: then L ⊆ L(G), and at some later point,
we will increase F to a fiducial set, and we will be in state 1: this is the region
labeled over-general.

3.4. Learning Algorithm 61

3. K is not a kernel and F is fiducial. Either L(G) = L, in which case we have
converged to a correct answer or, if not, we will define a proper subset of the
target language. In the later case we will change hypothesis at some later point,
increase K to a kernel, and move to state 2 or state 1. This is the area labeled
under-general.

4. K is not a kernel and F is not fiducial: in this case at some point we will move
to states 1 or 2. This is the area labeled wrong.

We will start by making some basic statements about properties of the algorithm:

Lemma 3.14. If there is some n, such that Fn is fiducial for Kn and L(Gn) = L, then
the algorithm will not change its hypothesis: i.e. for all n > N , Kn = KN , Fn = FN
and therefore Gn = GN .

Proof. If L(Gn) is correct, then the first condition of the loop will never be met; if Fn
is fiducial for Kn, then the second condition will never be satisfied.

Lemma 3.15. If there is some N such that KN is a kernel, then for all n > N ,
Kn = KN .

Proof. Immediate by definition of a kernel, and of the algorithm.

We now prove that if F is not fiducial then the algorithm will be able to detect this.

Lemma 3.16. If there is some n such that Fn is not fiducial for Kn, then there is some
index n′ ≥ n at which Fn will be increased.

Proof. If Fn is not fiducial, then by definition there is some u ∈ K, v ∈ Σ+ such that
FL(u) ⊆ FL(v), but there is an f ∈ CL(u) that is not in CL(v). By construction FL(u)

is always non-empty, and so is FL(v). Thus v ∈ Sub(L). Note f�u ∈ L, so f ∈ Con(L).
Let n′ be the smallest index such that v ∈ Sub(Dn) and f ∈ Con(Dn): at this point,
either Fn will have changed, or not, in which case it will be increased at this point.

We now prove that we will always get a fiducial feature set.

Lemma 3.17. For any n, there is some n′ such that Fn′ is fiducial for Kn.

Proof. If Fn is fiducial then n′ = n satisfies the condition. Assume otherwise. Let F
be a finite set of contexts that is fiducial for Kn. We can assume that F ⊆ Con(L).
Let n1 be the first index such that Con(Dn1) contains F . At this point we are not
sure that Fn1 = Con(Dn1) since the conditions for changing the set of contexts may
not be reached. Anyhow, if it is the case then Fn1 is fiducial, then n1 = n′ satisfies
the condition. If not, then by the preceding lemma, there must be some point n2 at
which we will increase the set of contexts of the current grammar; Fn2 = Con(n2) must
contain F since Con(Dn1) ⊂ Con(Dn2), and is therefore fiducial, and so n2 = n′ satisfies
the condition.

62 Chapter 3. On Learning from Strings

Lemma 3.18. For every positive presentation of an L ∈ LCFG, there is some n such
that either the algorithm has converged to a correct grammar or Kn is a kernel.

Proof. Let m be the smallest number such that Sub(Dm) is a kernel. Recall that any
superset of a kernel is a kernel, and that all CFL with the FKP have a finite kernel
(Lemma 3.12), and that such a kernel is a subset of Sub(L), so such an m must exist.

Consider the grammar Gm; there are three possibilities:
1. L(Gm) = L, and Fm is fiducial, in which case the grammar has converged.
2. L(Gm) is a proper subset of L and Fm is fiducial. Let m′ be the first point at which
wm′ is in L \L(Gm); at this point Km′ will be increased to include Sub(Dm) and it will
therefore be a kernel.
3. Fm is not fiducial: in this case by Lemma 3.17; there is some n at which Fn is fiducial
for Km. Either Kn = Km in which case this reduces to Case 2; or Kn is larger than
Km in which case it must be a kernel, since it will include Sub(Dm) which is a kernel.

We now can prove the main result of the chapter:

Theorem 3.19. Algorithm 3.1 identifies in the limit the class of context-free languages
with the finite context property and the finite kernel property.

Proof. By Lemma 3.18 there is some point at which it converges or has a kernel. If
Kn is a kernel then by Lemma 3.17, there is some point n′ at which we have a fiducial
feature set. Therefore L(Gn′) = L, and the algorithm has converged.

3.4.7 Examples

We will now give a worked example of the algorithm.
Suppose L = {anbn|n > 0}.
G0 will be the empty grammar, with K = ∅, F = {(λ, λ)} and an empty set of

productions. L(G0) = ∅.

1. Suppose w1 = ab. D = {ab}. This is not in L(G0) so we set

• K = Sub(D) = {a, b, ab}.
• F = Con(D) = {(λ, λ), (a, λ), (λ, b)}.

This gives us one production: FL(ab) → FL(a)FL(b) which corresponds to
{(λ, λ)} → {(λ, b)}{(a, λ)}, and the lexical productions {(λ, b)} → a, {(a, λ)} → b.
The language defined is thus L(G1) = {ab}.

2. Suppose w2 = aabb. D = {ab, aabb}. This is not in L(G1) so we set

• K = Sub(D) = {a, b, ab, aa, bb, aab, abb, aabb}.

3.4. Learning Algorithm 63

• F = Con(D) = {(λ, λ), (a, λ), (λ, b), (aa, λ), (a, b), (λ, bb), (aab, λ), (aa, b),

(a, bb), (λ, abb)}.

We then have the following productions:

• FL(ab)→ FL(a), FL(b) which is
{(λ, λ), (a, b)} → {(a, bb), (λ, abb), (λ, b)}, {(aa, b), (aab, λ), (a, λ)}
• FL(aab)→ FL(a), FL(ab) which is
{(a, bb), (λ, b)} → {(a, bb), (λ, abb), (λ, b)}, {(λ, λ), (a, b)}

• FL(aab)→ FL(aa), FL(b) which is
{(a, bb), (λ, b)} → {(λ, bb)}, {(aa, b), (aab, λ), (a, λ)}
• FL(bb)→ FL(b), FL(b) which is
{(aa, λ)} → {(aa, b), (aab, λ), (a, λ)}, {(aa, b), (aab, λ), (a, λ)}
• FL(aa)→ FL(a), FL(a) which is
{(λ, bb)} → {(a, bb), (λ, abb), (λ, b)}, {(a, bb), (λ, abb), (λ, b)}
• FL(aabb)→ FL(a), FL(abb) which is
{(λ, λ), (a, b)} → {(a, bb), (λ, abb), (λ, b)}, {(aa, b), (a, λ)}
• FL(aabb)→ FL(aa), FL(bb) which is
{(λ, λ), (a, b)} → {(λ, bb)}, {(aa, λ)}
• FL(aabb)→ FL(aab), FL(b) which is
{(λ, λ), (a, b)} → {(a, bb), (λ, b)}, {(aa, b), (aab, λ), (a, λ)}
• FL(abb)→ FL(a), FL(bb) which is
{(aa, b), (a, λ)} → {(a, bb), (λ, abb), (λ, b)}, {(aa, λ)}
• FL(abb)→ FL(ab), FL(b) which is
{(aa, b), (a, λ)} → {(λ, λ), (a, b)}, {(aa, b), (aab, λ), (a, λ)}

and the two lexical productions:

• FL(a)→ a which is {(a, bb), (λ, abb), (λ, b)} → a

• FL(b)→ b which is {(aa, b), (aab, λ), (a, λ)} → b.

K is now a kernel and L(G) = L, but F is not fiducial for K, since (λ, bb) is not
fiducial for aa (consider aaab).

3. Suppose w3 = aaabbb. Now |Con(D3)| = 21; there are now several elements
of Con(D3) that are similar. For example (λ, λ), (a, b) and (aa, bb) are identical
but as it is harmless for the resulting grammar, it does not mind. Now we will
detect that F is not fiducial: we will find v = aaab, u = aa and f = (λ, abbb);
FL(aa) = {(λ, bb)} = FL(aaab), but f � aaab = aaababbb which is not in L.
We will therefore increase F to be Con(D3), and then the algorithm will have
converged. The final grammar will have 10 productions and 2 lexical productions;
|K| = 8 and |F | = 21.

64 Chapter 3. On Learning from Strings

3.5 Practical Behavior of the Algorithm

In this section, we propose to study the behavior of our algorithm from a practical point
of view. We focus more specifically on two important issues. The first one deals with
the learning ability of the algorithm when the conditions for the theoretical learning
result are not reached. Indeed, although the identification in the limit paradigm proves
that with sufficient data it is possible to obtain exact convergence, it says nothing about
the convergence when fewer learning examples are available: does the output get closer
and closer to the target until it reaches it or does it stay far from the expected solution
until receives enough data? The second question concerns the learning behavior of the
algorithm: does it tend to over-generalize or to under-generalize?

For our experimental setup, we need to select appropriate datasets. In grammatical
inference little has been done concerning benchmarking. The main available corpora
are those of the on line competitions organized by the International Conference on
Grammatical Inference. Three different competitions have recently taken place4: the
Abbadingo One [Lang et al., 1998] which was about regular languages, the Omphalos
competition on context-free languages [Starkie et al., 2004] and the Tenjino competi-
tion [Starkie et al., 2006] dealing with transducers learning. Note that some of these
datasets correspond to extremely hard learning problems since their main objective was
to push the state of the art (some problems of the Abbadingo One competition are still
unsolved thirty years after its official end!)

However, these datasets can not be directly used for evaluating our algorithm be-
cause the solutions or the target models are not available. Our algorithm needs an
oracle and thus we need a way to give answers to membership queries. In order to
overcome this drawback, we chose to build synthetically some data sets following the
experimental setup proposed by these competitions. More precisely, we decided to
randomly generate target context-free grammars following what has been done for the
Omphalos competition. Each grammar is then used either to generate training and test
sets or as an oracle for answering membership queries.

In the following paragraphs we describe first the generation of the target context-
free grammars, then the experimental setup with learning and test datasets used and
finally the results and conclusions that can be drawn.

3.5.1 Generation of Target Context-free Grammars

To generate the target grammars we follow the process used for the Omphalos compe-
tition [Starkie et al., 2004]. We built 30 different grammars randomly according the
following principles. For each grammar, we first fix the number of non-terminals and

4Three other competitions have been organized since this work: Zulu [Combe et al., 2010] on query
learning, PAutomaC [Verwer et al., 2014] on learning probabilistic finite state models, and SPiCe [Balle
et al., 2017] on guessing the next letter of a prefix.

3.5. Practical Behavior of the Algorithm 65

terminals which are randomly chosen between 4 and 7 for the non-terminals (including
the start symbol) and between 2 and 4 for terminal symbols. Then we randomly gener-
ate 20 context-free rules in Chomsky normal form such that every non-terminal appears
at least once in the left hand side of a grammar rule. In order to avoid the presence of
useless rules, we apply two simple procedures: if a non-terminal can not generate any
terminal string, a new terminal rule generating one terminal symbol is created for this
non-terminal; if a non-terminal can not be reached from the start symbol, we erase it
from the grammar (i.e. we remove all the rules containing this non-terminal). From
these grammars without useless rules, we force them to generate non finite languages by
checking that the start symbol is used at least once in a right hand side of a grammar
rule (in average this symbol appears in a right hand side of a rule more than 3 times
per grammar).

The main difference with the Omphalos generation process is that we do not espe-
cially need non-regular languages. Indeed, one of the aim of these experiments is to give
an idea on the behavior of the algorithm when its theoretical assumptions are not likely
to be valid. From this standpoint, all randomly generated non-finite languages are good
candidates as learning targets. However, with a similar principle used for the Omphalos
competition, we checked that some of the generated grammars can not be easily solved
by methods for regular languages. Although we can not decide if these grammars define
non regular context-free languages, it ensures us that the target models are at least not
too simple.

3.5.2 Experimental Setup

For each target grammar we generate a learning and a test sample following the Om-
phalos competition requirements. We build the learning sample by first creating a
structurally complete set (see Definition 2.9) of strings for each grammar. Recall that
this set is built such that for each rule of the target grammar, at least one string of
the set can be derived using this rule [Parekh and Honavar, 1996]. This would guaran-
tee that the complete learning set would have the minimal amount of information for
finding the structure of the grammar. We then complete this learning set by randomly
generating new strings from the grammar in order to have a total of 50 examples. We
chose arbitrarily this value for two reasons: first it is sufficient to ensure that each sam-
ple strictly contains a structurally complete set for each target grammar and secondly
we are likely to be far from the guarantees of the identification in the limit framework.

The construction of the test set needs particular attention. Since the learning phase
uses a membership oracle, when the hypothesis is being constructed, some new strings
may be built and queried for the oracle by picking a substring and a context from the
learning sample. Thus, even if the test set does not contain any string of the learning
sample, the construction G0 may consider some strings present in the test set. In order

66 Chapter 3. On Learning from Strings

to avoid this drawback, i.e. to guarantee that no string of the test could be seen during
the construction of the CBFG, each test string has a length of at least 3 times the
maximal length of the strings in the learning set, which is by construction the maximal
size of the strings queried. According to this procedure, we randomly generate a test set
of 1000 strings over the alphabet of terminal symbols used to define the target grammar
(1000 examples is twice the size of the small test sets of the Omphalos competition). The
test sequences are then labeled positive or negative depending on their membership to
the language defined by the grammar. We repeat this process until we have the desired
number of strings. The ratio between strings in the language and strings outside the
language is fixed to be between 40% and 60%.

In order to study the behavior of our algorithm, we define the following setup. For
each target context-free grammar, we construct a CBFG by applying the construction
G0(K,O, F) with K = Sub(S) and F = Con(S) where S is a set of strings drawn from
the learning set and using the target grammar as the oracle O for the membership
queries. We generate different sets S by drawing an increasing number of learning
examples (from 2 to 50) from the learning sample of the considered grammar. Then,
we evaluate the learned CBFG on the test sample by measuring the accuracy of correct
classification. We present the results averaged on the 30 test sets of the different target
context-free grammars.

3.5.3 Results and Discussion

Figure 3.3 shows the averaged accuracy over the different target grammars according
to the number of strings in the learning sample. We can note that a high correct
classification rate (nearly 90%) is reached with 20 examples and with only 5 examples
an accuracy of 75% is obtained. These results indicate that a relevant hypothesis can
be found even with few examples. The standard deviations represented by vertical bars
show a good stability of the results from learning sets of 20 strings. This confirms that
our algorithm is able to learn partly correct representations even when learning sets
may not have a kernel or a fiducial learning set and thus are far from the identification
in the limit assumptions.

The analysis of the behavior of the algorithm in terms of false positive and false neg-
ative rates is shown in Table 3.1. The proportion of false negatives (i.e. positive strings
classified as negative) is significantly5 higher than the proportion of false positives (i.e.
negative strings classified as positive), whatever the size of the learning sample is. Thus
the output of the algorithm tends more to under-generalize than the converse. As it is
generally admitted that over-generalization is the main trouble when learning from pos-
itive examples, this tendency confirms that the algorithm behaves well. However, it is
difficult to draw firm conclusions without a natural distribution over negative examples.

5The significance was assessed by a Student paired t-test with a risk of 1%.

3.5. Practical Behavior of the Algorithm 67

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50

%
 o

f a
ve

ra
ge

 a
cc

ur
ac

y
ov

er
 th

e
te

st
 s

et
s

Number of strings in the learning sample

Figure 3.3: Evolution of the average percentage of correct classification according to
the number of learning examples.

The preceding results show that despite its simplicity the algorithm behaved nicely
during these experiments, in particular concerning over-generalization. We focus now
on the amount of queries needed by the algorithm for building the CBFG. The growth of
the number of requested queries according to the average size of the learning sample is
shown in Figure 3.4 (recall that here the size of the sample means the sum of the string
lengths of the sample). While a very worst case analysis of the grammar construction
used by G0 would lead to a complexity in O(|S|5), we can observe that the number of
queries seems to be quadratic, at least in the case of the grammars we consider here.
However, the volume of queries used is large, which can be explained by the simplicity
of the algorithm. From a practical standpoint, it is clear that much work has to be
done in order to try to minimize the number of queries needed by selecting the most
informative examples, but this point is out of the scope of the chapter.

Finally, we can note that these experiments suffer of the lack of comparison with
other approaches. This is due to the fact that, at the time we work on that subject, no
other tractable algorithm used a positive learning sample and a membership oracle only.
Indeed, since the work of Angluin [1988] about the Minimum Adequate Teacher all algo-
rithms using membership queries were designed with the additional help of equivalence
queries. The point of view adopted in this chapter is rather theoretical since our aim
was to show the relevance of CBFG representations for language learning. However,

68 Chapter 3. On Learning from Strings

Number of strings in S false positive false negative
02 07.2 % ± 12.3 36.4 % ± 7.0
05 04.5 % ± 4.7 28.4 % ± 9.1
10 03.8 % ± 2.9 22.4 % ± 8.4
15 03.9 % ± 2.6 14.1 % ± 6.6
20 04.1 % ± 3.0 09.4 % ± 6.1
30 04.2 % ± 2.8 07.9 % ± 5.5
40 03.9 % ± 2.6 05.6 % ± 4.7
50 04.4 % ± 1.6 04.8 % ± 3.9

Table 3.1: Average percentage of false positive and false negative rates obtained over
the test samples.

a perspective of this work is to try to avoid the use of the oracle (by using statistical
or simulation methods) which will allow us to compare more easily our approach with
other methods.

3.6 Expressiveness of CBFG

In this section, we compare the expressiveness of CBFG with other well known repre-
sentations. As noted earlier, we are primarily interested in the class of exact CBFGs
– these are CBFGs where the presence of a contextual feature in the representation
corresponds exactly to the language theoretic interpretation of the context. The class
of unrestricted CBFG is significantly larger, but less relevant.

The algorithm presented in this chapter cannot learn the entire class of exact
CBFGs, but we conjecture that there are more powerful algorithms that can6.

3.6.1 Exact CBFGs and the Chomsky Hierarchy

We start by examining the class of languages defined by exact CBFGs. We will show
that this class

• includes all regular languages

• does not include all context free languages

• includes some non-context-free languages.

This class is thus orthogonal to the Chomsky hierarchy.
6This conjecture was proven true afterwards by Yoshinaka [2015] that we will discuss in the last

section of this chapter.

3.6. Expressiveness of CBFG 69

 10

 100

 1000

 10000

 100000

 1e+06

 10 100

Av
er

ag
e

nu
m

be
r o

f q
ue

rie
s

Average size of the learning sample

Number of requests
f(x)=x^4
f(x)=x^3
f(x)=x^2

Figure 3.4: Growth of the number of membership queries versus the average of the total
size of the learning sample (using log log scale).

3.6.1.1 Regular Languages

Any regular language can be defined by an exact CBFG. We will show a way of con-
structing an exact CBFG for any regular language. Suppose we have a regular language
L: we consider the left and right residual languages:

u−1L = {w|uw ∈ L}, (3.5)

Lu−1 = {w|wu ∈ L}. (3.6)

For any u ∈ Σ∗, let lmin(u) be the lexicographically shortest element such that
l−1minL = u−1L. The number of such lmin is finite by the Myhill-Nerode theorem, we
denote by Lmin this set, i.e. {lmin(u)|u ∈ Σ∗}. We define symmetrically Rmin for the
right residuals (Lr−1min = Lu−1).

We define the set of contexts as:

F (L) = Lmin ×Rmin. (3.7)

F (L) is clearly finite by construction.

70 Chapter 3. On Learning from Strings

Figure 3.5: Example of a DFA. The left residuals are defined by λ−1L, a−1L, b−1L are
the right ones by Lλ−1, Lb−1, Lab−1 (note here that La−1 = Lλ−1).

If we consider the regular language defined by the deterministic finite automata of
Figure 3.5, we obtain Lmin = {λ, a, b} and Rmin = {λ, b, ab} and thus
F (L) = {(λ, λ), (a, λ), (b, λ), (λ, b), (a, b), (b, b), (λ, ab), (a, ab), (b, ab)}.

By considering this set of features, we can prove the following lemma:

Lemma 3.20. For any strings u, v such that FL(u) ⊃ FL(v) then CL(u) ⊃ CL(v).

Proof. Suppose FL(u) ⊃ FL(v) and let (l, r) be a context in CL(v). Let l′ be the
lexicographically shortest element of {u : u−1L = l−1L} and r′ the lexicographically
shortest element of {u : Lu−1 = Lr−1}. By construction we have (l′, r′) ∈ F (L) and
l′vr′ ∈ L, as vr′ ∈ l′−1L = l−1L. FL(v) is contained in FL(u) therefore we have
l′ur′ ∈ L. l′−1L = l−1L implies lur′ ∈ L. As r′ is congruent to r, lur ∈ L.

This lemma means that the set of features F is sufficient to represent context inclu-
sion.

Note that the number of congruence classes of a regular language is finite. Each
congruence class is represented by a set of contexts FL(u). LetKL be finite set of strings
formed by taking the lexicographically shortest string from each congruence class. The
final grammar can be obtained by combining elements of KL. For every pair of strings
u, v ∈ KL, we define a rule

FL(uv)→ FL(u)FL(v) (3.8)

and we add lexical productions of the form FL(a)→ a, a ∈ Σ.

The following lemma shows the correctness and the exactness of the grammar.

Lemma 3.21. For all w ∈ Σ∗, fG(w) = FL(w).

Proof. (Sketch) The proof is in two steps: fG(w) ⊆ FL(w) and FL(w) ⊆ fG(w). Each
step is made by induction on the length of w and uses the rules created to build the
grammar, the derivation process of a CBFG and the fiduciality for the second step.

3.6. Expressiveness of CBFG 71

First, we show ∀w ∈ Σ∗, fg(w) ⊆ FL(w) by induction on the length of w. For
|w| = 1, the inclusion is trivial since all the lexical rules FL(a)→ a are included in the
grammar. Suppose that a string w, |w| = n > 1, is parsed by the CBFG G, then there
exists a cut of w in uv = w and a rule z → xy in G such that x ⊆ fG(u) and y ⊆ fG(v).
By induction hypothesis, x ⊆ FL(u) and y ⊆ FL(v). By construction of the grammar,
there exists two strings u′, v′ ∈ KL such that u, resp. v, belongs to same congruence
class than u′, resp. v′ and the rule FL(u′v′)→ FL(u′)FL(v′) belongs to the productions
of the grammar. By induction hypothesis, x ⊆ FL(u) = FL(u′) and y ⊆ FL(v) = FL(v′)

and thus fG(w) ⊆ FL(w).
Second, we prove that ∀w ∈ Σ∗, FL(w) ⊆ fG(w) by induction on the length of w. The
key point relies on the fact that when a string w is parsed by a CBFG G, there exists
a cut of w into uv = w (u, v ∈ Σ∗) and a rule z → xy in G such that x ⊆ fG(u) and
y ⊆ fG(v). The rule z → xy is also obtained from a substring from the set used to build
the grammar using the FL function. By the inductive hypothesis we obtain inclusion
between fG and FL on u and v.

For the language of Figure 3.5, the following set is sufficient to build an exact
CBFG: {a, b, aa, ab, ba, aab, bb, bba} (this corresponds to all the substrings of aab and
bba). We have:
FL(a) = F (L)\{(λ, λ), (a, λ)} → a,
FL(b) = F (L)→ b,
FL(aa) = FL(a)→ FL(a)FL(a),
FL(ab) = F (L)→ FL(a)FL(b) = FL(a)F (L),
FL(ba) = F (L)→ FL(b)FL(a) = F (L)FL(a),
FL(bb) = F (L)→ FL(b)FL(b) = F (L)F (L),
FL(aab) = FL(bba) = FL(ab) = FL(ba).

The approach presented here gives a canonical form for representing a regular lan-
guage by an exact CBFG. Moreover, this is is complete in the sense that every context
of every substring will be represented by some element of F : this CBFG will completely
model the relation between contexts and substrings.

3.6.1.2 Exact CBFGs do not include all CFLs

First, it is clear that the class of exact CBFGs includes some non-regular context-free
languages: the grammar defined in Section 3.3.3 is an exact CBFG for the context-free
and non regular language {anbn|n > 0}, showing the class of exact CBFG has some
elements properly in the class of CFGs.

We give now a context-free language L that can not be defined by an exact CBFG:

L = {anb|n > 0} ∪ {ancm|m > n > 0}.

72 Chapter 3. On Learning from Strings

Suppose that there exists an exact CBFG that recognizes it and let N be the length of
the biggest feature (i.e. the longest left part of the feature). For any sufficiently large
k > N , the sequences ck and ck+1 share the same features: FL(ck) = FL(ck+1). Since
the CBFG is exact we have FL(b) ⊆ FL(ck). Thus any derivation of ak+1b could be a
derivation of ak+1ck which does not belong to the language.

However, this restriction does not mean that the class of exact CBFG is too re-
strictive for modeling natural languages. Indeed, the example we have given is highly
unnatural and such phenomena appear not to occur in attested natural languages.

3.6.1.3 CBFG and Non Context-Free Languages

CBFGs are more powerful than CFGs in two respects. First, CBFGs can compactly
represent languages like the finite language of all n! permutations of an n-letter
alphabet, that have no concise representation as a CFG [Asveld, 2006]. Secondly, as
we now show, there are some exact CBFGs that are not context-free. In particular,
we define a language closely related to the MIX language (consisting of strings with an
equal number of a’s, b’s and c’s in any order) which is known to be non context-free,
and indeed is conjectured to be outside the class of indexed grammars [Boullier, 2003].

Let M = {{a, b, c}+}, the set of all strings of length at least one that can be built on
the alphabet {a, b, c}. We consider now the language
L = Labc ∪ Lab ∪ Lac ∪ {a′a, b′b, c′c, dd′, ee′, ff ′}:
Lab = {wd|w ∈M, |w|a = |w|b},
Lac = {we|w ∈M, |w|a = |w|c},
Labc = {wf |w ∈M, |w|a = |w|b = |w|c}.
In order to define a CBFG recognizing L, we have to select features (contexts) that can
represent exactly the intrinsic components of the languages composing L. We propose
to use the following set of features for each sub-language:

• For Lab: (λ, d) and (λ, ad), (λ, bd).

• For Lac: (λ, e) and (λ, ae), (λ, ce).

• For Labc: (λ, f ′).

• For the letters a′, b′, c′, a, b, c we add: (λ, a), (λ, b), (λ, c), (a′, λ), (b′, λ), (c′, λ).

• For the letters d, e, f, d′, e′, f ′ we add; (λ, d′), (λ, e′), (λ, f ′), (d, λ), (e, λ), (f, λ).

Here, Lab will be represented by (λ, d), but we will use (λ, ad), (λ, bd) to define the
internal derivations of elements of Lab. The same idea holds for Lac with (λ, e) and
(λ, ae), (λ, ce).

3.6. Expressiveness of CBFG 73

For the lexical rules and in order to have an exact CBFG, note the special case for
a, b, c:
{(λ, bd), (λ, ce), (a′, λ)} → a

{(λ, ad), (b′, λ)} → b

{(λ, ae), (c′, λ)} → c

For the nine other letters, each one is defined with only one context, for example using
the rule {(λ, d′)} → d.

For the production rules, the most important one is: (λ, λ) →
{(λ, d), (λ, e)}, {(λ, f ′)}.

Indeed, this rule, with the presence of two contexts in one of categories, means
that an element of the language has to be derived so that it has a prefix u such that
fG(u) ⊇ {(λ, d), (λ, e)}. This means u is both an element of Lab and Lac. This rule
represents the language Labc since {(λ, f ′)} can only represent the letter f .

The other parts of the language will be defined by the following rules:
(λ, λ)→ {(λ, d)}, {(λ, d′)},
(λ, λ)→ {(λ, e)}, {(λ, e′)},
(λ, λ)→ {(λ, a)}, {(λ, bd), (λ, ce), (a′, λ)},
(λ, λ)→ {(λ, b)}, {(λ, ad), (b′, λ)},
(λ, λ)→ {(λ, c)}, {(λ, ae), (c′, λ)},
(λ, λ)→ {(λ, d′)}, {(d, λ)},
(λ, λ)→ {(λ, e′)}, {(e, λ)},
(λ, λ)→ {(λ, f ′)}, {(f, λ)}.

This set of rules is incomplete, since for representing Lab, the grammar must contain
the rules ensuring to have the same number of a’s and b’s, and similarly for Lac. To
lighten the presentation here, the complete grammar is presented in Appendix.

We claim this is an exact CBFG for a context-sensitive language. L is not context-
free since if we intersect L with the regular language Σ∗d, we get an instance of the
non context-free MIX language (with d appended). The exactness comes from the fact
that we chose the contexts in order to ensure that strings belonging to a sub-language
can not belong to another one and that the derivation of a substring will provide all
the possible correct features with the help of the union of all the possible derivations.

Note that the MIX language on its own is not definable by an exact CBFG: it is
only when other parts of the language can distributionally define the appropriate partial
structures that we can get context sensitive languages. Far from being a limitation of
this formalism (a bug), we argue this is a feature: it is only in rather exceptional
circumstances that we will get properly context sensitive languages. This formalism
thus potentially accounts not just for the existence of non context-free natural languages
but also for their rarity.

74 Chapter 3. On Learning from Strings

3.6.2 Inexact CBFGs

We are less interested in the class of all CBFGs: these are CBFGs where the contexts
are just arbitrary features and there is no relation between fG(u) and CL(u) except for
the presence of (λ, λ). However, it is important to understand the language theoretic
power of this class as this upper bounds the hypothesis class of the algorithm, and is
easier to analyze.

3.6.2.1 Context-free grammars

First, we note that this class contains all context-free languages. Given a context-free
language, that does not include the empty string, we can take a CFG in Chomsky
normal form and convert it directly into a CBFG. Let V be the set of non-terminals
of such a CFG. We pick an arbitrary set of distinct contexts to represent the elements
of V , subject only to the constraint that S corresponds to (λ, λ). Let C(N) be the
context corresponding to the non-terminal N . For every production rule in the CFG
of the form N → PQ, we add a CBFG production {C(N)} → {C(P)}, {C(Q)}. For
every production in the CFG of the form N → a, we add a CBFG production to PL of
the form {C(N)} → a. It is easy to see that this will define the same language.

3.6.2.2 Range Concatenation Grammars

While CBFG formalism has some relationship to a context-free grammar, and some
to a semi-Thue system (also known as a string rewriting system), it is not formally
identical to either of these. One exact equivalence is to a restricted subset of Range
Concatenation Grammars; a very powerful formalism [Boullier, 2000]. We include the
following relationship, but suggest that the reader unfamiliar with RCGs proceeds to
the discussion of the relationship with the more familiar class of context-free grammars.

Lemma 3.22. For every CBFG G, there is a non-erasing positive range concatenation
grammar of arity one, in 2-var form that defines the same language.

Proof. Suppose G = 〈F, P, PL,Σ〉. Define a RCG with a set of predicates equal to F
and the following clauses, and the two variables U, V . For each production x → yz in
P , for each f ∈ x, where y = {g1, . . . gi}, z = {h1, . . . hj} add clauses

f(UV)→ g1(U), . . . gi(U), h1(V), . . . hj(V).

For each lexical production {f1 . . . fk} → a add clauses

fi(a)→ ε.

It is straightforward to verify that f(w) ` ε iff f ∈ fG(w).

3.7. Discussion and Conclusion 75

3.6.2.3 Conjunctive Grammar

A tighter correspondence is to the class of Conjunctive Grammars [Okhotin, 2001],
invented independently of RCGs.

Definition 3.16. A conjunctive grammar is defined as a quadruple 〈Σ, N, P, S〉, in
which: Σ is the alphabet; N is the set of non terminal symbols; P is the set of rules,
each of the form A→ α1&...&αm, where A ∈ V and ∀i < m, αi ∈ (V ∪ Σ)∗; S ∈ N is
the start symbol.

In this formalism, a string w is derived from A ∈ V iff there exists a rule A →
α1&...&αm in P and for all i ≤ m, αi derives w.

We claim that for every every language L generated by a conjunctive grammar
there is a CBFG representing L# (where the special character # is not included in the
original alphabet).

Suppose we have a conjunctive grammar G = 〈Σ, N, P, S〉 in binary normal form
(as defined in [Okhotin, 2003]). We construct the equivalent CBFG G′ = 〈F, P ′, PL,Σ〉
as followed:

• For every letter a we add a context (la, ra) to F such that laara ∈ L;

• For every rules X → a in P , we create a rule {(la, ra)} → a in PL.

• For every non terminal X ∈ N , for every rule X → P1Q1& . . .&PnQn we add
distinct contexts {(lPiQi , rPiQi)} to F, such that for all i it exists ui, lPiQiuirPiQi ∈
L and PiQi

∗⇒G ui;

• Let FX,j = {(lPiQi , rPiQi) : ∀i} the set of contexts corresponding to the jth

rule applicable to X. For all (lPiQi , rPiQi) ∈ FX,j , we add to P ′ the rules
(lPiQi , rPiQi)→ FPi,kFQi,l (∀k, l).

• We add a new context (w, λ) to F such that S ∗⇒G w and (w, λ)→ # to PL;

• For all j, we add to P ′ the rule (λ, λ)→ FS,j{(w, λ)}.

It can be shown that this construction gives an equivalent CBFG.

3.7 Discussion and Conclusion

One of the main objective of our approach is to provide a framework that helps to
bridge the gap between theoretical methods of grammatical inference and the structured
representations required in linguistics. We provide a conclusion and a discussion of our
work according to these two standpoints, and we finish this chapter by giving a brief
survey of the works that continued the ideas presented here.

76 Chapter 3. On Learning from Strings

3.7.1 Grammatical Inference

In this chapter, we have presented a new formalism, the Contextual Binary Feature
Grammars, and shown its relevance for representing a large class of languages. We
have proposed a learning algorithm using only membership queries and shown that this
algorithm can identify in the limit the class of context-free languages satisfying the
FCP and FKP assumptions. First of all, we should establish how large the class of
languages with the FCP and the FKP is: it includes all finite languages and all regular
languages, since the set of congruence classes is finite for finite state languages. It
similarly includes the context-free substitutable languages, [Clark and Eyraud, 2007],
since every string in a substitutable language belongs to only one syntactic congruence
class. As already stated it does not include all CFLs since not all CFLs have the FCP
and/or the FKP. However it does include languages like the Dyck languages of arbitrary
order, Lukacevic language and most other classic simple examples. As a special case
consider the equivalence relation between contexts f ∼=L f

′ iff ∀u we have that f�u ∈ L
iff f ′ � u ∈ L. The class of CFLs where the context distribution of every string is a
finite union of equivalence classes of contexts clearly has both the FKP and the FCP.

If we now focus on the algorithm proposed: it is relatively simple but has two
main drawbacks. First, the algorithm is not conservative since once we have found
the correct language, the representation may change – if the feature set found is not
fiducial – until the fiduciality is reached. Second, the CBFG output by the algorithm
may not be consistent with some answers provided by the oracle. Indeed, when the
algorithm checks the fiduciality of the feature set F , the membership of new strings is
tested. These strings do not appear in the list of learning examples given to the oracle
but are built from all the possible contexts and substrings that can be extracted from
this list. Then, it is possible that, among these new strings, some of them belong to
the target language but are not recognized by the current grammar. In this case, the
output grammar is nevertheless not modified. We can imagine a procedure that changes
the grammar by adding these new positive strings for building the CBFG, however this
could lead to having to deal with an exponential number of strings. Thus, a more
reasonable procedure is to wait for these strings in the positive data presentation. One
proposal for future work, from these two remarks, is a new learning algorithm that
overcomes these drawbacks.

Our approach to context-free grammatical inference is based on a generalization of
distributional learning, following the work of Clark and Eyraud [2007]. The state of
the art in context-free inductive inference from flat unstructured examples only was
rather limited at the time of this work. When learning from stochastic data or using
a membership oracle, it is possible to have powerful results, if we allow exponential
computation (see for example [Horning, 1969]). The main contribution of this work is
thus to show that efficient learning is possible, with an appropriate representation.

The presented work relies on using a membership oracle, but under suitable assump-

3.7. Discussion and Conclusion 77

tions about distributions, it could be possible to get a PAC-learning result for this class
along the lines of Clark [2006] or Shibata and Yoshinaka [2016], placing some bounds
on the number of features required.

3.7.2 Linguistics

The field of grammatical inference has close relations to the study of language ac-
quisition. Attempts to model natural languages with context-free grammars require
additional machinery: natural language categories such as noun phrases contain many
overlapping subclasses with features such as case, number, gender and similarly for ver-
bal categories. Modeling this requires either an exponential explosion of the number of
non-terminals employed or a switch to a richer set of features. Our formalism can be
seen as a first step to integrate such features. While we have implemented the algorithm
described here, and verified that it works in accordance with theory on small artificial
examples, there are a number of modifications that would need to be made before it
can be applied to real grammar induction on natural language. First, the algorithm is
very naive; in practice a more refined algorithm could select both the kernel and the
feature set in a more sophisticated way. Secondly, considering features that correspond
to individual contexts may be too narrow a definition for natural language given the
well known problems of data sparseness and it will be necessary to switch to features
corresponding to sets of contexts, which may overlap. Thus for example one might have
features that correspond to sets of contexts of the form F (u, v) = {(lu, vr)|l, r ∈ Σ∗}.
This would take this approach closer to methods that have been shown to be effective in
unsupervised learning in NLP [Klein and Manning, 2004] where typically |u| = |v| = 1.
In any event, we think such modifications will be necessary for the acquisition of non
context-free languages. Finally, at the moment the algorithm has polynomial update
time, but in the worst case, there are deterministic finite state automata such that the
size of the smallest kernel will be exponential in the number of states. There are, how-
ever, natural algorithms for generalizing the productions by removing features from the
right hand sides of the rules; this would have the effect of accelerating the convergence
of the algorithm, and removing the requirement for the Finite Kernel Property.

3.7.3 Following works

As already mentioned, the work presented in this chapter is the starting point of several
other positive results that have been obtained since its first publication.

First, the idea of using the properties of context inclusion as the semantic of non-
terminals for grammars has been proven crucial in distributional learning. Actually, this
led to two parallel paths of research: approaches that define this semantics by strings
are called primal and those by contexts are dual [Clark and Yoshinaka, 2016]. By relying
at the same time on strings (for the decomposition of non-terminals in right handsides

78 Chapter 3. On Learning from Strings

of rules) and on contexts (for the semantic of non-terminals, which are set of contexts),
CBFG are the only example of a mixed approach. Recent works have shown that not
confusing the two gives better control during the inference and a better characterization
of the learnable classes. The study of the syntactic concept lattice [Clark, 2015] complete
the understanding of the inherent properties of substring/context distribution and its
interest for learning.

The notions of Finite Kernel Property (FKP) and Finite Context Property (FCP)
have also been shown to be central in distributional learning: the extension called the
k-FKP is a requirement of most of the works in the primal approach, while k-FCP is
needed for dual ones. It is worth noticing that the definition of the FCP given in this
chapter is not the one currently used: it is now referred to as the finite fiducial set
property. For a complete panorama of the existing properties and their nuances, we
refer the Reader to the recent paper of Kanazawa and Yoshinaka [2017].

Then, the framework of having a set of examples of the target language and a
membership oracle, though not completely new, has been proven extremely useful since
its (re)introduction in the work presented in this chapter. Indeed, classes of increasing
complexity have been proven learnable in this framework:

• Families of context-free classes enjoyed efficient learning results, either in the
primal or the dual approaches [Clark, 2010b, Yoshinaka, 2011, 2012, Leiß, 2014]

• Yoshinaka [2010] showed that the class of multiple context-free languages with
the FKP is learnable under this paradigm. This result in the primal concerns a
class that contains context-free languages and context-sensitive ones.

• Clark and Yoshinaka [2013] proved the learnability in this framework of a sub-
class of parallel multiple context-free grammars which generate non-semilinear
languages covering all known structures of natural languages, including the non
context-free ones. This result relies on an extension of the notion of k-FCP, and
thus takes the dual approach.

While the usual grammatical approach consists in restraining existing classes, the
attitude of designing and studying representations shaped for learning that is at the
core of the work presented here have also been fecund. We can cite for instance the work
on lattice representations [Clark, 2009] or the one on plane graph grammars presented
in the next chapter (Chapter 4).

Finally, the most direct continuation of this work is certainly the paper of Yoshinaka
[2015]. Indeed, he showed in this article that exact CBFG and conjunctive grammars
with the k-FCP are equivalent models and he provided a learning algorithm for this class
of conjunctive grammars, proving a stronger learning result than the one presented here
(providing that the learner knows the value of k). His result comes with nice efficiency
guarantees:

Bibliography 79

• the time required to infer a model is polynomial in the size of the learning sample,

• the number of queries is also polynomial in this size,

• conditions for a set of examples to be characteristic are given, together with a
bound on the number of elements in these samples polynomial in the size of the
target representation.

In addition, although it is presented in the usual identification in the limit paradigm,
the algorithm is set-driven in the sense that each hypothesis depends only on the
available example and the answer of the oracle. Therefore, and despite the fact that
the proof still need to be carefully written, everything needed is available to provide
an identification from polynomial time, thick data, and queries result.

This brief panorama about the work on distributional learning that followed the one
presented in this chapter does not claim to be exhaustive. For instance we did not
detail the works in other learning paradigms (see for instance the papers from Clark
[2010a] or Shibata and Yoshinaka [2016]), the identification of more abstract grammar
formalisms [Yoshinaka and Kanazawa, 2011], or using more structured data like trees
(see Kasprzik and Yoshinaka [2011] or Clark et al. [2016] for instance) or graphs (see
Chapter 4 of this HDR).

Bibliography

P. Adriaans. Learning shallow context-free languages under simple distributions. Alge-
bras, Diagrams and Decisions in Language, Logic and Computation, 127, 2002. 41

D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87–106, 1987. 41

D. Angluin. Queries and concept learning. Mach. Learn., 2(4):319–342, 1988. 67

P.R.J. Asveld. Generating all permutations by context-free grammars in Chomsky
normal form. Theoretical Computer Science, 354(1):118–130, 2006. 72

B. Balle, R. Eyraud, F. M. Luque, A. Quattoni, and S. Verwer. Results of the se-
quence prediction challenge (SPiCe): a competition on learning the next symbol in a
sequence. In S. Verwer, M. van Zaanen, and R. Smetsers, editors, Proc. of The Inter-
national Conference on Grammatical Inference, volume 57 of Proceedings of Machine
Learning Research, pages 132–136. PMLR, 2017. 64

L. Boasson and G. Senizergues. NTS languages are deterministic and congruential. J.
Comput. Syst. Sci., 31(3):332–342, 1985. 42

80 Bibliography

P. Boullier. A Cubic Time Extension of Context-Free Grammars. Grammars, 3:111–131,
2000. 42, 46, 74

P. Boullier. Counting with range concatenation grammars. Theoretical Computer Sci-
ence, 293(2):391–416, 2003. 72

R.C. Carrasco and J. Oncina. Learning stochastic regular grammars by means of a state
merging method. In R.C. Carrasco and J. Oncina, editors, Proc. of the International
Conference on Grammatical Inference, volume 862 of LNAI, pages 139–150. Springer,
1994. 41

N. Chomsky. Knowledge of Language : Its Nature, Origin, and Use. Praeger, 1986. 40

A. Clark. PAC-learning unambiguous NTS languages. In Proc. of the International
Conference on Grammatical Inference, pages 59–71, 2006. 41, 77

A. Clark. A learnable representation for syntax using residuated lattices. In Proc. of
Formal Grammar, Bordeaux, France, 2009. 78

A. Clark. Distributional learning of some context-free languages with a minimally
adequate teacher. In J M. Sempere and P. García, editors, Proc. of the International
Conference on Grammatical Inference, pages 24–37. Springer, 2010a. 79

A. Clark. Learning Context Free Grammars with the Syntactic Concept Lattice, pages
38–51. Springer Berlin Heidelberg, 2010b. 78

A. Clark. The syntactic concept lattice: Another algebraic theory of the context-free
languages? Journal of Logic and Computation, 25(5):1203–1229, 2015. 78

A. Clark and R. Eyraud. Polynomial identification in the limit of substitutable context-
free languages. Journal of Machine Learning Research, 8:1725–1745, 2007. 41, 76

A. Clark and R. Yoshinaka. Distributional learning of parallel multiple context-free
grammars. Machine Learning, 2013. 78

A. Clark and R. Yoshinaka. Distributional Learning of Context-Free and Multiple
Context-Free Grammars, pages 143–172. Springer Berlin Heidelberg, 2016. 77

A. Clark, R. Eyraud, and A. Habrard. A polynomial algorithm for the inference of con-
text free languages. In Proc. of International Conference on Grammatical Inference,
pages 29–42. Springer, September 2008. 40

A. Clark, R. Eyraud, and A. Habrard. A note on contextual binary feature grammars.
In Proc. of the EACL Workshop on Computational Linguistic Aspects of Grammatical
Inference, CLAGI ’09, pages 33–40. Association for Computational Linguistics, 2009.
40

Bibliography 81

A. Clark, R. Eyraud, and A. Habrard. Using contextual representations to efficiently
learn context-free languages. Journal of Machine Learning Research, 11:2707–2744,
2010. 40

A. Clark, M. Kanazawa, G. M. Kobele, and R. Yoshinaka. Distributional learning of
some nonlinear tree grammars. Fundamenta Informaticae, 146(4):339–377, 2016. 79

D. Combe, C. de la Higuera, and J.-C. Janodet. Zulu: An Interactive Learning Com-
petition, pages 139–146. Springer Berlin Heidelberg, 2010. 64

F. Denis, A. Lemay, and A. Terlutte. Learning regular languages using rfsas. Theor.
Comput. Sci., 313(2):267–294, 2004. 41

R. Eyraud. Inférence Grammaticale de Langages Hors-Contextes. PhD thesis, Université
Jean Monnet, 2006. 40

R. Eyraud, C. de la Higuera, and J.C. Janodet. Lars: A learning algorithm for rewriting
systems. Machine Learning, 66(1):7–31, 2007. 41

G. Gazdar, E. Klein, G. Pullum, and I. Sag. Generalised Phrase Structure Grammar.
Basil Blackwell, 1985. 42, 46

E.M. Gold. Language identification in the limit. Information and Control, 10:447–474,
1967. 58

Z. Harris. Distributional structure. Word, 10(2-3):146–62, 1954. 41

C. De La Higuera and J. Oncina. Inferring deterministic linear languages. In Proc. of
the Conference on Computational Learning Theory, pages 185–200. Springer-Verlag,
2002. 41

J.J. Horning. A Study of Grammatical Inference. PhD thesis, Stanford University,
Computer Science Department, California, 1969. 76

A.K. Joshi and Y. Schabes. Tree-adjoining grammars. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, pages 69–124. Springer, Berlin,
New York, 1997. 41

M. Kanazawa and R. Yoshinaka. The strong, weak, and very weak finite context and
kernel properties. In Proc. of Language and Automata Theory and Applications, pages
77–88, 2017. 78

A. Kasprzik and R. Yoshinaka. Distributional learning of simple context-free tree gram-
mars. In Proc. of Algorithmic Learning Theory, pages 398–412, 2011. 79

82 Bibliography

D. Klein and C.D. Manning. Corpus-based induction of syntactic structure: models
of dependency and constituency. In Proc. of the Annual Meeting on Association for
Computational Linguistics, pages 478–485, 2004. 77

K.J. Lang, B.A. Pearlmutter, and R. Price. Results of the abbadingo one dfa learning
competition and a new evidence driven state merging algorithm. In Proc. of the In-
ternational Conference on Grammatical Inference, pages 1–12. Springer-Verlag, 1998.
64

P. Langley and S. Stromsten. Learning context-free grammars with a simplicity bias.
In Proc. of the European Conference on Machine Learning, pages 220–228. Springer-
Verlag, 2000. 41

H. Leiß. Learning context free grammars with the finite context property: A correction
of a. clark’s algorithm. In G. Morrill, R. Muskens, R. Osswald, and F. Richter, editors,
Proc. of Formal Grammar, pages 121–137. Springer Berlin Heidelberg, 2014. 78

S. Marcus. Algebraic Linguistics; Analytical Models. Academic Press, N. Y., 1967. 45

K. Nakamura and M. Matsumoto. Incremental learning of context-free grammars based
on bottom-up parsing and search. Pattern Recognition, 38(9):1384–1392, 2005. 41

A. Okhotin. Conjunctive grammars. J. Autom. Lang. Comb., 6(4):519–535, 2001. 75

A. Okhotin. An overview of conjunctive grammars. Formal Language Theory Column,
bulletin of the EATCS, 79:145–163, 2003. 75

R. Parekh and V. Honavar. An incremental interactive algorithm for regular grammar
inference. In Proc. of the International Conference on Grammatical Inference, pages
238–250. Springer-Verlag, 1996. 65

L. Pitt. Inductive inference, dfa’s, and computational complexity. In Lecture Notes in
Artificial Intelligence, pages 8–14. Springer-Verlag, 1989. 58

C. Shibata and R. Yoshinaka. Probabilistic learnability of context-free grammars with
basic distributional properties from positive examples. Theoretical Computer Science,
620:46–72, 2016. 77, 79

B. Starkie, F. Coste, and M. Van Zaanen. The omphalos context-free grammar learning
competition. In Proc. of the Internation Conference on Grammatical Inference, pages
16–27. Springer, 2004. 64

B. Starkie, M. van Zaanen, and D. Estival. The tenjinno machine translation compe-
tition. In Proc. of the International Conference on Grammatical Inference, volume
4201 of Lecture Notes in Computer Science, pages 214–226. Springer-Verlag, 2006. 64

Bibliography 83

M. van Zaanen and N. van Noord. Evaluation of selection in context-free grammar
learning systems. In Proc of the International Conference on Grammatical Inference,
pages 193–206, 2014. 41

S. Verwer, R. Eyraud, and C. dela Higuera. Pautomac: a probabilistic automata and
hidden markov models learning competition. Machine Learning, 96(1):129–154, 2014.
64

T. Yokomori. Polynomial-time identification of very simple grammars from positive
data. Theoretical Computer Science, 298(1):179–206, 2003. 41

R. Yoshinaka. Identification in the limit of k,l-substitutable context-free languages.
In Proc. of the International Conference on Grammatical Inference, pages 266–279.
Springer-Verlag, 2008. 41

R. Yoshinaka. Polynomial-time identification of multiple context-free languages from
positive data and membership queries. In Proc. of the International Conference on
Grammatical Inference, pages 230–244, 2010. 78

R. Yoshinaka. Towards dual approaches for learning context-free grammars based on
syntactic concept lattices. In G. Mauri and A. Leporati, editors, Proc. of Develop-
ments in Language Theory, pages 429–440, 2011. 78

R. Yoshinaka. Integration of the dual approaches in the distributional learning of
context-free grammars. In A.-H. Dediu and Carlos M., editors, Proc. of Language
and Automata Theory and Applications, pages 538–550. Springer Berlin Heidelberg,
2012. 78

R. Yoshinaka. Learning conjunctive grammars and contextual binary feature grammars.
In A.-H. Dediu, E. Formenti, C. Martín-Vide, and B. Truthe, editors, Proc. of Lan-
guage and Automata Theory and Applications, pages 623–635. Springer International
Publishing, 2015. 58, 68, 78

R. Yoshinaka and M. Kanazawa. Distributional learning of abstract categorial gram-
mars. In Proc. of Logical Aspects of Computational Linguistics, pages 251–266, 2011.
79

Chapter 4

On Learning from Graphs

Contents
4.1 Introduction . 86

4.2 On Plane Graphs . 89

4.2.1 Concatenation . 92

4.2.2 Plane isomorphism . 93

4.3 The Grammars for Plane Graph Languages 95

4.3.1 Applying a lexical rule . 98

4.3.2 Applying a production . 99

4.3.3 Representable languages . 100

4.3.4 Plane Graph Grammars and Related Formalism’s 101

4.4 Properties of Plane Graph Grammars 103

4.4.1 Context-freeness property . 103

4.4.2 A Parsing Algorithm . 104

4.5 Learning substitutable plane graph languages 106

4.5.1 Substitutable plane graph languages 106

4.5.2 The Learner . 109

4.5.3 Learning result . 110

4.6 Discussion . 115

Bibliography . 115

Context of this work

The origins of this chapter date back to a couple of discussions with Tim Oates during
my visiting year at the University of Maryland. Once we made inroads into the thematic
of learning from graphs, it appeared important to join our efforts with the researchers
that had just proposed the new graph formalism that looked promising for our learning
goal. That is how Jean-Christophe Janodet, and his PhD student Frederic Papadopou-
los, joined us on that project. Two papers describing this research were accepted for

86 Chapter 4. On Learning from Graphs

publication (and few were rejected): one in a peer-reviewed conference [Eyraud et al.,
2012] and a longer article, called Designing and Learning Substitutable Plane Graph
Grammars, in a journal [Eyraud et al., 2016].

At the core of this work, there is the will to extend distributional learning to graph
data. Indeed, at the time I started this research, Kasprzik and Yoshinaka [2011] had
just extended the first results on strings to trees: graphs were thus the next obvious
step. However, it quickly appeared that despite numerous formalizations, no graph
grammar formalism is truly shaped for learning. This is why I decided to introduce
and investigate a new formalism, that we called plane graph grammars. This explains
why an important part of this chapter deals with the definition and the study of this
formalism. Despite of that, it is important to remember that the final goal is and has
always been the learning from graph data.

Finally, notice that the learning framework here is simpler than the one used in
Chapter 3. It corresponds to the one used for the first works on distributional learn-
ing [Clark and Eyraud, 2005, 2007, Yoshinaka, 2008]: the learner only have access to
examples of the (graph) language to identify. I formalize for the first time in this chapter
an identification in polynomial time and thick data result in this context.

4.1 Introduction

Graph Grammars have been defined and studied for more than four decades from a
language-theoretical standpoint (see the article from Rozenberg and Ehrig [1997] for an
overview), but the learning of these formalism’s is known to be intricate and has hardly
been investigated in the literature yet. Most contributions concern heuristics tailored
for graphs involved in restricted application domains. This is the case of both most
famous algorithms, Subdue [Cook and Holder, 2000] and FFSM [Huan et al., 2003],
and their extensions [Matsuda et al., 2002, Jonyer et al., 2003, Kukluk et al., 2008].

On the theoretical side, it appears that learnability results are even rarer and of-
ten provide us with preliminary results, rather than effective learning procedures. For
instance, Jeltsch and Kreowski [1991] give an algorithm that generates the set of gram-
mars consistent with a given set of graphs. Brijder and Blockeel [2011] investigate the
inference of a grammar consisting of a single production rule, given a graph and a dis-
tinguished pattern with many occurrences. Few necessary conditions for the learning of
graph grammars have also been established under unrestricted Gold’s paradigm [Costa
Florêncio, 2009]. Besides, note that new approximate learnability results are anticipated
in the framework of recognizable series of (hyper-)graphs [Bailly et al., 2015].

The situation is a bit different in other branches of Machine Learning: several
techniques have been proposed to tackle classification problems over graphs in the scope
of social network analysis, biological network analysis or image analysis [Harchaoui and
Bach, 2007]. However, they generally hide the complexity of the graph structures into

4.1. Introduction 87

abstract numerical structures such as graph kernels [Kadri et al., 2013]. These kernels
mainly consist in counting the number of particular subgraphs in a new data in order to
represent the graph as a vector: but doing this, machine learners forget that detecting
a subgraph in a graph is generally not efficiently tractable...

There exist many reasons for this, ranging from the profusion of incomparable graph
grammar formalism’s to the hardness of the model itself. Concerning the latter, many
basic problems, such as the search for a subgraph in a graph, and thus the possibility
to parse/recognize a graph with a grammar, are generally NP-complete [Garey and
Johnson, 1979]. Nevertheless, the main reason for this absence of positive learning
results is probably that no kind of graph grammars was designed with the aim of
learning. Indeed, two main characteristics have to be shared by the representation
formalism if one wants to use it as a model for inference. On the one hand, the graph
isomorphism problem needs to be efficiently solvable: the key point to learn graph
grammars is to extract knowledge about the structure of the graphs in the learning
sample. In addition, for most applications, it suffices to view isomorphic graphs as the
same object, so the choice of vertices names is of less importance. If a low priority is
given to the understanding of the structure, general machine learning methods can be
applied to graph data with great success [Vishwanathan et al., 2010].

The second important characteristic is that the grammar formalism has to capture
properties that are observable in a set of data. The most obvious kind of observable
properties concerns sub-structures, e.g. the frequency or the relative positions of the
subgraphs in the graphs of the sample. But standard graph grammars of different types
are not designed for the inference from the observation of properties of sub-structures.
For instance, in the framework of Hyperedge-Replacement Grammars (HRG) [Drewes
et al., 1997], we can compute from a sample the set of external nodes for each sub-
hypergraph. However, this set of vertices must be transformed into a sequence during
the inference stage of a HRG, as the ordering of given by this sequence is necessary for
the embedding mechanism that is used when a rule is applied to rewrite a hypergraph.
In other words, an essential piece of information for the inference of a HRG is not
observable in the sample.

From a general standpoint, one way to tackle the difficulties raised by the learn-
ing of generative devices (grammars) consists in restricting the class of languages into
consideration. That is, the successful approach in Grammatical Inference is often to
determine features that are learnable, which usually correspond to observable proper-
ties in any set of examples, and then to focus only on the languages that share these
characteristics.

Hence, in the case of graph languages, we should first determine which kind of
graphs are likely to be learnable, and then choose the kind of grammars to use. For
reasons that will be developed in this chapter, a promising candidate is the class of plane
graphs, that is, planar graphs embedded in the plane (see Figure 4.1 for an example).

88 Chapter 4. On Learning from Graphs

Note that a planar graph has a set X of vertices and a set E of edges as usual, but as
soon as this graph is embedded in the plane, it also has a set F of faces, one of them
- called the outer face - is different of the others as it corresponds to the part of the
plane where the graph is not bounded (it is thus infinite). A planar graph may have
several incomparable drawings, so we define a plane graph by fixing the embedding.
More formally, a plane graph stands for an isotopy class of planar embeddings for a
given planar graph [Fusy, 2007]. A plane graph is thus a planar graph that is embedded
in the plane without edge-crossing and up to continuous deformations. Given a planar
embedding of a planar graph, Fáry [1948] proved that it is always possible to move the
vertices, within the same isotopy class, so that the edges are drawn with straight-line
segments. We shall use such straight-line drawings in the following.

Now, as no common graph grammar formalism captures the specificities of such
plane graphs, we choose not to use existing general graph-grammar formalism’s, but
propose in this chapter a new type of grammar, called the Plane Graph Grammars
(PGG). These grammars can be seen as face-replacement grammars, thus constitute an
interesting alternative to standard node-replacement or hyperedge-replacement gram-
mars. Indeed, their rules replace one face by a new plane graph, which is sewn in the
mother graph using a syntactic gluing law. We provide theoretical results about these
grammars regarding the possibility to efficiently parse a plane graph, and compare them
with other types of graph grammars. More precisely, the restriction which allows to
parse a graph in polynomial time forces the number of subgraphs whose outer face con-
tains a given number of nodes to grow polynomially with the size of the graphs in the
language represented.

We then investigate the learning of PGG, and prove that one can get formal learn-
ability results in this setting. We believe that this is quite an interesting improvement
w.r.t. the state of the art. Concerning the difficulties, notice that when one is trying
to learn from graphs, negative data are usually not available. We know since the work
by Gold [1967] that it is not possible to identify in the limit any superfinite class1 of
languages from positive data, and thus need to restrict ourselves to a subclass of plane
graph languages. The recent successes of distributional learning for string grammars
(see Chapter 3) and tree grammars [Kasprzik and Yoshinaka, 2011] motivate us to de-
fine an analogue of substitutable context-free languages [Clark and Eyraud, 2007] for
plane graph languages.

Notice that a preliminary version of this chapter appeared in the Proceedings of
the International Conference in Grammatical Inference in 2012, but the present chapter
is substantially different: in [Eyraud et al., 2012] we tackled the problem of learning
Binary Plane Graph grammars, a type of PGG where the production rules had binary
right hand-sides and were thus similar to Chomsky normal forms. Moreover, we omitted
the study of their properties. Following [Eyraud et al., 2016], we consider in this chapter

1A class is superfinite if it contains all possible finite languages and at least one infinite language.

4.2. On Plane Graphs 89

general PGG, show that they have the same language expressiveness than binary PGG,
improve the definition of the rewriting mechanism and propose new conditions for the
parsing problem to be achievable in polynomial time. We also improve the learning
algorithm and thus establish a more general learnability result for substitutable plane-
graph languages.

Preliminaries about plane graphs are given in Section 4.2. The definition of Plane-
Graph Grammars as well as the rewriting mechanism is detailed in Section 4.3, where
we also compare them with node-replacement grammars and hyperedge-replacement
grammars. We prove formal properties of these grammars in Section 4.4, in the scope
of the parsing problem. Next Section 4.5 is devoted to the learning of PGG, and is
thus the core of the chapter: the substitutability property is first adapted, then the
learning procedure is described, and an identification result with efficiency bounds is
finally proved for substitutable plane graph languages. We conclude the chapter with
a discussion in Section 4.6.

4.2 On Plane Graphs

We have introduced the plane graphs using the notion of embeddings, i.e., functions
that map vertices to points, and edges to curves. However, this mathematical approach
is quite unsuitable for designing algorithms. As the set of faces is the corner stone to
describe plane graphs, we introduce plane graph systems [de la Higuera et al., 2013]
below, which allow us to describe any connected plane graph through its faces.

Let X ⊂ N be the alphabet of vertices. Following the definitions and notations of
previous chapters, X∗ is the set of all strings over X. Given a string x = a1 . . . an, we
denote xR the reverse string of x, that is to say xR = an . . . a1. We also define first(x)

to be a1. A circular string is intuitively a string in which the last symbol is followed
by the first; more precisely, there is neither a first nor a last symbol but a mapping
associating to each symbol the next one. We denote a circular string by [u], with the
convention that if u and v are two strings, then [uv] = [vu]. The set of all circular strings
over X is denoted by

◦
X. We set [x]R = [xR]. Finally, given an alphabet X, we can

extend any function φ : X → X to strings: ∀x = a1 . . . an ∈ X∗, φ̂(x) = φ(a1) . . . φ(an),
to circular strings: φ̂([x]) = [φ̂(x)], to sets of strings: φ̂(S) = {φ̂(x) : x ∈ S}, and to
sets of pairs of strings: φ̂(C) = {{φ̂(x), φ̂(x′)} : {x, x′} ∈ C}.

Now consider the plane graph of Figure 4.1. The outer face is f1 and the bounded
(inner) faces are f2 and f3. Each face has only one boundary since the graph is con-
nected. Such a boundary can be described by a circular string of vertices in which two
consecutive vertices and the last and first vertices are linked by an edge. Conventionally,
we follow a boundary by leaving it to the right. In other words, the bounded face is on
the left of the walk. Hence, the boundary of face f3 is [53634], or equivalently [63453],
by circular permutation.

90 Chapter 4. On Learning from Graphs

Figure 4.1: A plane graph with 3 faces.

We now introduce the following description system for connected plane graphs:

Definition 4.1 (Plane Graph System [de la Higuera et al., 2013]). A plane graph system
(PGS for short) is a tuple S = 〈X,E, F, o,D〉 such that

1. 〈X,E〉 is a connected simple graph [Gibbons, 1985],

2. F is a finite nonempty set of symbols called the faces,

3. o ∈ F is a special face called the outer face and

4. D : F →
◦
X is a function, called the boundary descriptor, that maps any face to

its boundary.

For sake of readability, we shall make no distinction between a face f and the description
of its boundary D(f). In consequence, function D will be kept implicit most of the time
and we simply denote by 〈X,E, F, o〉 the plane graph system S.

Note that every plane graph can be described with a plane graph system (see below
for an example), but the converse does not hold in general. We thus introduce further
conditions below:

Definition 4.2 (Valid PGS). A PGS S = 〈X,E, F, o,D〉 is valid if:

1. For all f ∈ F and x, y ∈ X and u ∈ X∗, if D(f) = [xyu] then {x, y} ∈ E;

2. For all e = {x, y} ∈ E, there exist a unique face f ∈ F such that D(f) = [xyu],
and an unique face f ′ ∈ F such that D(f ′) = [yxv], for some u, v ∈ X∗;

3. For all f ∈ F and x, y, z, z′ ∈ X and u, v ∈ X∗, if D(f) = [xyzuxyz′v] or
D(f) = [zxyuz′xyv] then z = z′;

4. Euler’s formula holds, that is, |X| − |E|+ |F | = 2.

4.2. On Plane Graphs 91

Validity allows any PGS to denote a plane graph. Indeed, the two first conditions
ensures that the sets of vertices and edges and faces are well-defined; the third condition
eliminates all the circular strings that cannot describe the boundary of any face in any
planar embedding of any graph; the fourth condition implies that the surface on which
the graph is drawn has a null genus, and is thus a plane (thanks to the infinite face o).

This property is established by the following theorem. As the problem is quite far
from the core of this chapter, the proof is given in Appendix 4.6. Notice that all the
PGS we shall consider in this chapter will be valid, so this property will be kept implicit,
most of the time:

Theorem 4.1. Any valid PGS describes an unique plane graph (up to continuous
deformation).

Let G be the set of all the (valid) plane graph systems. The size of a PGS G =

〈X,E, F, o〉 is |G| =
∑

f∈F |f |. Given any edge e, we denote by faces(e) the set of faces
incident to edge e. Notice that faces(e) can contain either 1 or 2 faces (only one in
the case of a pendant edge). We use nodes(f) and edges(f) for the set of vertices and
edges along the boundary of face f , respectively.

For instance, consider the plane graph of Figure 4.1. The corresponding PGS
is S = 〈X,E, F, o〉 with X = {1, 2, 3, 4, 5, 6}, E = {{1, 2}, {1, 3}, {2, 4}, {3, 4},
{3, 5}, {3, 6}, {4, 5}}, F = {f1, f2, f3}, o = f1 and f1 = [13542], f2 = [1243],
f3 = [34536]. Moreover, we have faces({3, 4}) = {f2, f3}, faces({3, 6}) = {f3},
nodes(f3) = {3, 4, 5, 6} and edges(f3) = {{3, 4}, {4, 5}, {5, 3}, {3, 6}}.

Definition 4.3 (Set of connected faces). Let S = 〈X,E, F, o〉 be a PGS. Two distinct
faces f, f ′ ∈ F are adjacent if ∃e ∈ E : faces(e) = {f, f ′}. The faces of a subset K ⊆ F
are connected if ∀f, f ′ ∈ K, a sequence f = f0, f1, . . . fn = f ′ of faces in K exists such
that ∀i ∈ {0, 1, . . . , n− 1}, fi and fi+1 are adjacent.

Given a subset K ⊆ F of connected inner faces, we denote by outer(K) the
(boundary of the) outer face of that set. For instance, on the PGS of Figure 4.1,
outer({f2, f3}) = f1 and outer({f3}) = [354]. Notice that outer(K) can be computed
in polynomial time using the normalization procedure introduced by de la Higuera et al.
[2013].

Let us finally introduce the notion of subgraph that we will use throughout the rest
of this chapter:

Definition 4.4 (Pattern). Given a PGS G = 〈X,E, F, o〉 and a set F ′ ⊆ F \ {o} of
connected faces, the PGS G′ = 〈nodes(F ′), edges(F ′), F ′ ∪ {outer(F ′)}, outer(F ′)〉 is
called a pattern of G. By extension, any renaming of the vertices and edges and faces
of G′ will also be called a pattern of G.

For instance, the PGS G of Figure 4.1 has 3 patterns:

92 Chapter 4. On Learning from Graphs

• 〈{1, 2, 3, 4}, {{1, 2}, . . .}, {[1243], [1342]}, [1342]〉,

• 〈{3, 4, 5, 6}, {{3, 4}, . . .}, {[34536], [354]}, [354]〉,

• and G itself.

More general notions of subgraphs exist (based on subsets of vertices and/or edges,
independently of faces), but they often induce intractable problems. In particular,
de la Higuera et al. [2013] showed that searching for a pattern in a PGS is tractable
in polynomial time, whereas searching for general subgraphs in planar graphs is a
NP-complete problem. In other words, the drawing of a planar graph is much more
informative than the planar graph alone. In the following, term subgraph will exclusively
mean pattern.

4.2.1 Concatenation

The concatenation of two PGS is a basic operation that allows one to glue together two
distinct plane graphs using their outer face.

Definition 4.5. Let G1 = 〈X1, E1, F1, o1〉 and G2 = 〈X2, E2, F2, o2〉 be two PGS, and
φ : nodes(o1) → nodes(o2) a partial bijective function. We say that G1 and G2 are
concatenable following φ if

• F1 ∩ F2 = ∅,

• (X1 \ nodes(o1)) ∩ (X2 \ nodes(o2)) = ∅, and

• ∃k > 1: φ̂(X1) ∩ X2 = {φ(a1), . . . , φ(ak)} and o1 = [a1 . . . aky] and o2 =

[φ(ak) . . . φ(a1)z] with y ∈ (X1 \X2)
∗ and z ∈ (X2 \X1)

∗ and |yz| ≥ 1.

Intuitively, two PGS are concatenable following φ if they can be glued together by
merging pairwise nodes of their outer face following φ. This requires that they can only
share nodes of their outer face, and that consecutive edges of one outer face correspond
to reverse consecutive edges in (the image by φ of) the other outer face. In consequence,
the gluing stage does not modify the inner faces.

Definition 4.6 (Concatenation). Let G1 = 〈X1, E1, F1, o1〉 and G2 = 〈X2, E2, F2, o2〉
be two PGS concatenable following function φ. The concatenation of G1 and G2 follow-
ing φ, written G1 �φG2, is the PGS G = 〈X1 ∪X2 \ {a1, . . . , ak}, E1 ∪E2 \ {{ai, ai+1} :

1 ≤ i < k}, φ̂(F1 \ {o1}) ∪ (F2 \ {o2}) ∪ {o}, o〉 with o = [φ(ak)yφ(a1)z].

If the function φ is the identity, we shall write G1 �G2 instead of G1 �id. G2.
Concatenation is well-defined, that is, if G1 and G2 are valid concatenable PGS,

then G1 �φ G2 is necessarily a valid PGS. Indeed, the conditions on the external faces

4.2. On Plane Graphs 93

4 3

21

H1= H2=

1 2

5

H3=
4 3

6

H4=

21

6

(H1 ◊ H2) ◊ H3=

4 3

211

5

6

Figure 4.2: Example of concatenation. H1 and H2 are concatenable following the
identity function and so is H2 and H4. The same occurs for H1 �H2 and H3. H2 and
H3 are not concatenable following the identity function, which is also the case of H1

and H4.

ensure that no new face is created by concatenation, but the outer one which is modified;
moreover, the concatenability property ensures us that the technical properties on the
boundaries are satisfied; finally, Euler’s relation holds, since (|X1|+ |X2| − k)− (|E1|+
|E2| − (k − 1)) + (|F1| − 1 + |F2| − 1 + 1) = 2.

Examples of concatenable and non-concatenable PGS are given in Figure 4.2. For
instanceH1 andH2 are concatenable following the identity function but it is not the case
of H1 and H4 since the third requirement of Definition 4.5 is not met. These examples
also show that the associativity of graph concatenation is not ensured: (H1�H2) and H3

are concatenable following the identity function, but H2 and H3 are not concatenable
following the identity and thusH1�(H2�H3) is not defined. In the absence of brackets in
a sequence of concatenations, we will consider the left to right organization: H1�H2�H3

is to be read as (H1 �H2) �H3.

4.2.2 Plane isomorphism

We finally need a way to compare two PGS:

94 Chapter 4. On Learning from Graphs

Definition 4.7 (Plane isomorphism [de la Higuera et al., 2013]). Let G1 =

〈X1, E1, F1, o1〉 and G2 = 〈X2, E2, F2, o2〉 be two PGS. We say that G1 and G2 are
plane-isomorphic, written G1

∼=p G2, if there exist a 1-to-1 mapping χ : X1 → X2 over
the vertices and a 1-to-1 mapping ξ : F1 → F2 over the faces such that (1) the outer
face is preserved: ξ(o1) = o2 and (2) the boundaries are preserved: ∀f1 ∈ F1, f2 ∈ F2,
if ξ(f1) = f2 and f1 = [a1 . . . an] then f2 = [χ(a1) . . . χ(an)] .

Plane-isomorphism is decidable in O(|E1| · |E2|) time [de la Higuera et al., 2013].
The key property to prove this result is that, given a PGS G and an edge e, we can
define an ordering over all the other edges which is unique and computable in linear
time thanks to a traversal of the PGS. So the isomorphism algorithm consists in finding
two edges e1 in G1 and e2 in G2, generating the ordering of all the edges in both PGS
and using them to generate possible isomorphism functions. A similar strategy is used
to check whether a given PGS is a pattern of any other PGS, that is, searching for
patterns is also tractable in polynomial time [de la Higuera et al., 2013].

We can now define the notion of plane graph language:

Definition 4.8. A set L of PGS is a plane graph language if it is closed under plane-
isomorphism: for all G1, G2 ∈ G such that G1

∼=p G2, we have G1 ∈ L⇐⇒ G2 ∈ L.

The following technical but crucial lemma deals with the link between concatenation
and plane-isomorphism. Informally, if two graphs are concatenable then graphs that are
plane-isomorphic to them are also concatenable (using a different function). Moreover,
the concatenated graphs are plane-isomorphic.

Lemma 4.2. Let G1, G
′
1, G2 and G′2 be four PGS such that G1

∼=p G
′
1 and G2

∼=p G
′
2.

Suppose that G1 and G2 are concatenable following a function φ. Then there exist a
PGS G′′1 such that G′′1 ∼=p G

′
1, and a function φ′ such that G′′1 and G′2 are concatenable

following φ′ and G1 �φ G2
∼=p G

′′
1 �φ′ G′2.

Proof. As G1
∼=p G

′
1 (resp. G2

∼=p G
′
2), there exist two 1-to-1 mapping χ1 : XG1 → XG′1

(resp. χ2 : XG2 → XG′2
) and ξ1 : F1 → F ′1 (resp. ξ2 : F2 → F ′2) fulfilling the conditions

of plane-isomorphism. As G1 and G2 are concatenable following φ, there exist vertices
a1, . . . , ak and (possibly empty) sequences of nodes y and z such that oG1 = [a1 . . . aky]

and oG2 = [φ(ak) . . . φ(a1)z]. Moreover we have oG′1 = [χ1(a1) . . . χ1(ak)χ̂1(y)] and
oG′2 = [χ2 ◦ φ(ak) . . . χ2 ◦ φ(a1)χ̂2(z)].

Let φ′ = χ2 ◦ φ ◦ χ−11 . Let us denote a′i = χ1(ai) for all 1 ≤ i ≤ k. Clearly we
have oG1 = [a′1 . . . a

′
kχ̂1(y)] and oG2 = [φ′(a′k) . . . φ

′(a′1)χ̂2(z)]. Moreover, |χ̂1(y)χ̂2(z)| =
|yz| ≥ 1. Finally, if XG′1

\nodes(oG′1)∩XG′2
\nodes(oG′2) 6= ∅, we can rename the inner

nodes of G′1 to create a new PGS G′′1 such that none of its inner nodes share the same
name with a node of G′2, and G′′1

∼=p G
′
1. Therefore G1

∼=p G
′′
1 and G′′1 and G′2 are

concatenable following φ′.

4.3. The Grammars for Plane Graph Languages 95

We need to show that G1�φG2
∼=p G

′′
1�φ′G′2. Let χ′1 and ξ′1 the functions defining the

plane-isomorphism between G1 and G′′1. Let χ : XG1�φG2 → XG′′1�φ′G′2 be the function
such that χ(v) = χ′1(v) if v ∈ XG1 and χ(v) = χ2(v) if v ∈ XG2 . As χ′1 and χ2 are
1-to-1 mappings over distinct domains, so is χ. Now let ξ : FG1�φG2 → FG′1�φ′G′2 be
the function such that ξ(f) = ξ′1(f) if f ∈ FG1 , and ξ(f) = ξ2(f) if f ∈ FG2 , and
ξ(oG1�φG2) = oG′′1�φ′G′2 . As ξ

′
1 and ξ2 are 1-to-1 mapping and FG1 ∩FG2 = ∅, we deduce

that ξ is a 1-to-1 mapping. In addition, as (χ′1, ξ
′
1) and (χ2, ξ2) preserve the boundaries

of the faces, it is also the case of (χ, ξ) by construction.

4.3 The Grammars for Plane Graph Languages

The new graph grammar formalism which is introduced below is based on the following
idea: a grammar consists of rules that explain how to replace a face by a pattern that
can be made of several faces but whose outer face is the same than the one being
replaced. Two types of rules must be given: the plane graph productions which allow
one to represent infinite and rich languages of plane graphs, and the lexical rules which
allow one to stop the generation process.

We first need to introduce non-terminal symbols, which are essentially the names
that we give to the faces that are replaced by the rules of the grammar. As in the
framework of the tree grammars [Engelfriet, 1975], we suppose that we have a ranked
alphabet for soundness and type-checking reasons.

Definition 4.9 (Non-terminal symbol). A non-terminal symbol is a couple (N, r) where
N is a name and r ≥ 2 is the rank of the non-terminal. For sake of simplicity, we assume
that for all non-terminal symbols (N1, r1) and (N2, r2), if N1 = N2, then r1 = r2. We
shall thus unambiguously write rank(N) for the rank r of non-terminal (N, r).

In a grammar rule, a non-terminal symbol may be attached to some face whose
number of nodes is equal to the rank of the non-terminal. In order to describe these
faces, we introduce the following non-terminal gadgets:

Definition 4.10 (Non-terminal gadget).

• A non-terminal gadget is a couple denoted Nx where x = a1 . . . ar is a sequence
of r pairwise-distinct vertices and (N, r) is a non-terminal symbol.

• Any non-terminal gadget Nx with x = a1 . . . ar implicitly denote a (valid) PGS
with a unique inner face which is bounded by string x. This PGS is formally
defined as follows: [[Nx]] = 〈X,E, {[x], [x]R}, [x]R〉 with X = {a1, . . . ar} and
E = {{ai, ai+1} : 1 ≤ i < r} ∪ {(ar, a1)}.

• We say that two gadgets N1
x1 and N2

x2 are concatenable if PGS [[N1
x1]] and [[N2

x2]]

are concatenable (following the identity). In this case, we denote by [[N1
x1N

2
x2]]

the PGS [[N1
x1]] � [[N2

x2]].

96 Chapter 4. On Learning from Graphs

An example of non-terminal gadget is given in Figure 4.3: the left-hand PGS corre-
sponds to gadget A1234, and is more precisely the graphical representation of the PGS
[[A1234]]. Notice that we attach the non-terminal symbol (here A) with a dashed line
to the vertex that appears at the head of the string that defines the non-terminal gad-
get (here vertex 1, that is, the first vertex in the string of gadget A1234). With this
convention, one can equivalently use textual and graphical description of non-terminal
gadgets. Many other examples of non-terminal gadgets appear in both the left-hand
side and the right-hand side of Figure 4.4. The reader may check that gadgets A2541

and N2645 on the one hand, and N2645 and B2346 on the other hand are respectively
concatenable.

We now define the two types of grammar rules used in our grammars. The former
denotes the terminal rules while the latter denotes the recursive rules.

Definition 4.11 (Plane graph lexical rule). A plane graph lexical rule is a pair (Nx, G∗),
written Nx → G∗, where (1) Nx is a non-terminal gadget and (2) G∗ = 〈X∗, E∗, F∗, o∗〉
is a valid PGS such that |F∗| = 2 and o∗ = [xR].

A graphical representation of plane graph lexical rule is shown in Figure 4.3. Notice
that in any rule Nx → G∗, the outer face of G∗ must be [xR], which is exactly the same
as that of [[Nx]], but the boundary of the (unique) inner face is not necessarily [x]: there
may be pendant edges.

Definition 4.12 (Plane graph production). A plane graph production is a tuple
(N0

x0 , . . . N
k
xk

), written N0
x0 → N1

x1 . . . N
k
xk
, where

1. N0
x0 , . . . , N

k
xk

are k + 1 non-terminal gadgets with k ≥ 2 and

2. N1
x1 , . . . , N

k
xk

are consecutively concatenable, that is, PGS [[N1
x1 . . . N

i
xi]] and

[[N i+1
xi+1

]] are concatenable for all 2 ≤ i < k, so that final PGS [[N1
x1 . . . N

k
xk

]] is
valid, and

3. the outer face of PGS [[N1
x1 . . . N

k
xk

]] is [x0]
R, which is exactly the same as that of

[[N0
x0]].

A production can be seen as the development of a face f made of rank(N0) vertices
into k adjacent faces whose overall shape is the same as that of f . Figure 4.4 graphically
shows the plane graph production N2341 → A2541 N2645 B2346.

We can now introduce the plane graph grammars that we consider in this chapter:

Definition 4.13 (Plane graph grammar). A plane graph grammar (PGG) G is a tuple
〈N , PL, P,A〉 such that N is a set of non-terminal symbols, PL is a set of plane graph
lexical rules, P is a set of plane graph productions, and A ⊆ N is the set of axioms.

4.3. The Grammars for Plane Graph Languages 97

21

2

4

3
5

3

2

1 A

4

Figure 4.3: A graphical representation of the plane graph lexical rule A1234 →
〈{1, 2, 3, 4, 5}, {(1, 2), (2, 3), (3, 4), (4, 5)}, {[123454], [1432]}, [1432]〉. Notice that it is
possible to simplify the textual notation of a lexical rule: the PGS on the right handside
is fully determined by its inner face. In this example we shall write A1234 → [123454].
In order to get a complete drawing (which would allow one to deduce the textual de-
scription of the rule), a dashed line attaches the non-terminal symbol to the vertex that
appears at the head of the string describing the non-terminal gadget of the left-hand
side. Note that in the rest of this manuscript, the textual description of the rule will
generally be sufficient, thus no equivalent graphical representation will be given in most
cases.

Example 4. Let G1 be the grammar 〈{(N, 4), (A, 4), (B, 4)}, PL, P, {(N, 4)}〉, with
PL = {A1234 → [123454], B1234 → [15123634], N1234 → [1234]} and P = {N2341 →
A2541 N2645 B2346}. The unique production of this grammar is the one represented in
Figure 4.4 while the first of the three lexical rules is depicted in Figure 4.3. Both latter
lexical rules are easy to draw from their definition.

In order to describe the derivation process of a PGS in a PGG, we need to introduce
the plane graph analogue of string grammar sentential forms. Contrary to the string
case, where such forms are just strings containing both terminal and non-terminal sym-
bols, a plane sentential form consists of a PGS together with a labeling function. The
role of this function is to attached non-terminals to faces: if a face is not labeled with
a non-terminal, then it cannot be rewritten and can thus be considered as a terminal
face; on the other hand, a face that is labeled can be seen as a non-terminal face: all
the rules rewriting this non-terminal can be applied.

Definition 4.14 (Plane sentential form). Let G = 〈N , PL, P,A〉 be a plane graph
grammar. A plane sentential form is a couple 〈G,L〉 where G = 〈X,E, F, o〉 is a valid
PGS and L : F → N × X is a partial function such that if L(f) = (N, a), then

98 Chapter 4. On Learning from Graphs

22

3

1

4

5

4

3

2 N

A

B

1

6

N

Figure 4.4: A graphical representation of the (recursive) plane graph production
N2341 → A2541 N2645 B2346. Recall that the dashed lines attach each non-terminal
symbol to the vertex appearing at the head of the string corresponding to that face in
the non-terminal gadget.

|nodes(f)| = rank(N) and a ∈ nodes(f).

Function L labels some faces with non-terminal symbols. It more precisely attaches
the label to one distinguished vertex a of the face. This allows us to introduce some
control during the application of a rule. Indeed, this trick is used to avoid all possible
rotations of the right hand-side of the rule when this right hand-side is glued in the
mother graph. We formally detail this below and a sequence of plane sentential forms
is given in Figure 4.5.

4.3.1 Applying a lexical rule

Let S = 〈G,L〉, with G = 〈X,E, F, o〉, be a sentential form. Consider a variant of
lexical rule R : Na1...am → G∗, that is, a version of this rule where the vertices and the
faces were consistently replaced with names that do not appear in G. We assume that
G∗ = 〈X∗, E∗, {f∗, o∗}, o∗〉 with o∗ = [a1 . . . am]R.

We say that rule R is applicable to the sentential form S if there exists a face
f = [a′1 . . . a

′
m] ∈ F of G such that L(f) = (N, a′1). In this case, we denote φ the

matching function {a1 7→ a′1, . . . , am 7→ a′m}, extended to all other vertices of G∗ (and
more precisely, of f∗) by setting φ(a) = a if a 6∈ {a1, . . . am}.

Applying lexical rule R to sentential form S consists in replacing the face f of
S by the PGS G∗, which is sewn to the rest of S using matching function φ. The
result is a new sentential form where L(f) is not defined anymore. More formally,
applying R to S following f consists in creating the sentential form S′ = 〈G′,L′〉 with
G′ = 〈X ′, E′, F ′, o′〉 such that

4.3. The Grammars for Plane Graph Languages 99

• F ′ = F \ {f} ∪ φ̂(f∗);

• o′ = o;

• X ′ = X ∪ φ̂(X∗);

• E′ = E ∪ φ̂(E∗);

• ∀f ′ ∈ F, f ′ 6= f , if L(f ′) is defined then L′(f ′) = L(f ′).

Plane graph grammars associate no semantics to the names chosen for the nodes and
the faces, and generate plane graphs whose nodes and faces all have distinct names. This
is explicit when a rule is applied: we use rule variants. This property will be essential
to prove context-freeness properties (see next section).

Another interesting consequence is that the PGS G′ which is created by applying a
lexical rule is valid as soon as the PGS G which is rewritten is valid. Indeed, PGS G
and G∗ do not share any face nor vertex names, which implies the syntactic conditions
for validity. As for Euler’s formula, we have |X∗| = |E∗| (since |F∗| = 2), so |X ′| −
|E′|+ |F ′| = |X| − |E|+ |F | − 1 + 1 = 2.

Example 5. The lexical rule A1234 → [123454] in G1 of Example 4 is applicable to the
sentential S3 of Figure 4.5. Once applied, the result is the sentential form S4 of the
same figure.

4.3.2 Applying a production

Let S = 〈G,L〉, with G = 〈X,E, F, o〉, be a sentential form. Consider a variant of
a production R : N0

a01...a
0
m
→ N1

a11...a
1
n1

. . . Nk
ak1 ...a

k
nk

. As above, we say that rule R is

applicable to sentential form S if there exists a face f = [a′1 . . . a
′
m] ∈ F such that

L(f) = (N0, a′1). We denote φ as well the matching function {a01 7→ a′1, . . . , a
0
m 7→ a′m},

extended to all other vertices of PGS [[N1
a11...a

1
n1

. . . Nk
ak1 ...a

k
nk

]] by setting φ(a) = a if

a 6∈ {a01, . . . , a0m}.
Applying R to S following f consists in creating the sentential form S′ = 〈G′,L′〉

with G′ = 〈X ′, E′, F ′, o′〉 such that

• F ′ = (F \ {f})
⋃

1≤i≤k{φ̂([ai1 . . . a
i
ni])}

• o′ = o;

• X ′ = X
⋃

1≤i≤k nodes(φ̂([ai1 . . . a
i
ni]));

• E′ = E
⋃

1≤i≤k edges(φ̂([ai1 . . . a
i
ni]));

• New labeling function L′ is as follows:

100 Chapter 4. On Learning from Graphs

– L′(φ̂([ai1 . . . a
i
ni])) = (N i, φ(ai1)) for all 1 ≤ i ≤ k, and

– ∀f ′ ∈ F, f ′ 6= f , if L(f ′) is defined, then L′(f ′) = L(f ′).

Example 6. The production N2341 → A2541 N2645 B2346 in G1 of Example 4 is appli-
cable to the sentential S1 of Figure 4.5 (and it is also applicable to S2). When applying
it, the sentential form S2 in the same figure is created.

Concerning the preservation of validity, note that the syntactic conditions holds
again thanks to the renaming of the production before we apply the rule. Checking
for Euler’s formula is nevertheless a bit more complicated, because the intersections of
the sets which are used to define X ′ and E′ are not empty. So let us step back: the
application of rule R returns to plug PGS G� = [[N1

a11...a
1
n1

. . . Nk
ak1 ...a

k
nk

]] in the hole left

by face f . Suppose that G� = 〈X�, E�, F�, o�〉. Due to the validity of G� (justified in
Section 4.2.1), we have |X�| − |E�|+ |F�| = 2. Moreover, the outer face of G� matches
the string a01 . . . a0m, so face o� is described with m vertices and m edges. Finally, the
application of a rule eliminate inner face f in G, and outer face o� of G�. Therefore, we
have |X ′| − |E′|+ |F ′| = (|X|+ |X�| −m)− (|E|+ |E�| −m) + (|F | − 1 + |F�| − 1) = 2,
and Euler’s formula holds.

Hence, the application of a lexical rule or a production to a PGS replaces a face by
a PGS whose outer face is the previous face, while the rest of the graph is unchanged.
As we have seen above, these mechanisms preserve the validity of the PGS, and are
thus well-defined and consistent.

4.3.3 Representable languages

Given a plane graph grammar G = 〈N , PL, P,A〉, we say that a plane graph G =

〈X,E, F, o〉 is generated by G, or that G derives G, if there exists a sequence of sentential
forms S1, . . . , Sn such that

• S1 = 〈G1,L1〉 is an initial sentential form, that is, G1 = 〈X1, E1, F1, o1〉 with
F1 = {oR, o} and o1 = o and L1 is only defined for oR: L1(oR) = (N, a), with
N ∈ A and a ∈ nodes(oR),

• ∀i, 1 ≤ i < n: Si+1 is obtained from Si by applying a rule of G,

• Sn = 〈Gn,Ln〉 with Gn = G and ∀f,Ln(f) is not defined.

The length of the derivation is n−1. An example of a derivation of length 4 is given
in Figure 4.5. Notice that every PGS generated by a PGG is necessarily valid because
the application of any type of rules (lexical rule or production) preserves validity.

We will write N ⇒∗G G, or simply N ⇒∗ G if G is obvious from the context, when
G = 〈X,E, F, o〉 is derivable with G using an initial sentential form S1 where L1 is

4.3. The Grammars for Plane Graph Languages 101

4

3

N

1

2S1= S2= S3=2

3

1

4

5

A

6

B

N

S4=

2

3

1

4

5

A

6

B

S5=2

3

1

4

5

6

B

7

2

3

1

4

5

6

7

8
9

Figure 4.5: A graphical representation of an example of a derivation in the grammar
G1 in Example 4. This derivation corresponds to the sequence of sentential forms
S1, S2, S3, S4, S5. The functions Li, 1 ≤ i ≤ 5, are represented via dash lines.

defined only on oR and L1(oR) = (N, a), for some a ∈ nodes(oR). If the length of the
derivation is n, we shall write N ⇒n

G G as usual.
The language represented by G is L(G) = {G : ∃G′,∃N ∈ A s.t. N ⇒∗G G′ ∧G′ ∼=p

G}.
Note that any PGS can be represented by a PGG. Indeed, we simply need an axiom

of the grammar to generate the outer face of the PGS and the concatenation of the faces
of PGS (without pendant edges), each of them labeled with a different non-terminal.
Then we add as many lexical rules as the number of non-terminals to complete each
face with pendant edges. Nevertheless, as it is discussed later on, not all then plane
graph languages can be generated with a PGG.

4.3.4 Plane Graph Grammars and Related Formalism’s

Two main types of graph grammars have been investigated in the literature. The first
one is the family of node replacement grammars [Nagl, 1976] and relies on a mechanism
that replaces one given node by a subgraph using gluing conditions; many gluing condi-
tions were studied and yield several subfamilies of node-replacement grammars. This is

102 Chapter 4. On Learning from Graphs

clearly different from how the generative process occurs with plane graph grammars and
thus a comparison between these two formalism’s is difficult. However, a dual graph
can be built from each planar graph [Whitney, 1931], where each node corresponds to
a face in the original graph, edges in one graph being edges in the other. From this
standpoint, replacing a face in the primal graph (i.e. the original PGS) by a pattern
corresponds to substituting a node of the dual graph by the corresponding dual sub-
graph. Embeddings2 in node replacement grammars differ from embeddings in plane
graph grammars in that it relies on node label semantics.

Hyperedge replacement grammars [Drewes et al., 1997] are another type of graph
grammar formalism’s that seems closer to the one introduced in this chapter. Indeed, in
these grammars, a hyperedge, i.e. a labeled entity that links up several nodes together,
is replaced by a subgraph. One can imagine that plane graph grammars are a special
kind of hyperedge replacement grammars, seeing a face labeled by a non-terminal as
a hyperedge with the same label. However, these two elements are of different nature.
For instance, there is no order on the outer nodes of a hyperedge and it is not possible
to define a unique one. This implies that if the same non-terminal can be derived
following two different ordering of the external nodes, then it needs to corresponds to
two different hyperedges.

The main difference between these formalism’s and plane graph grammars is the
semantics they attach to the node label. Indeed, in both cases, the labels of the nodes
of a glued subgraph are the ones the right hand-side of the rule, and if a rule is used
several times, it generates the same node labels each time. As a consequence, the set
of labels that can be found in a graph generated by such a grammar is bounded. Plane
graph grammars are of different nature as each node has a unique label, which allows the
closure of graph languages under isomorphism. The embedding mechanism (described in
Section 4.3) does thus not rely on label value. Together with the polynomial testability
of sub-isomorphism, this is a remarkable property from a learning standpoint: extracting
and comparing patterns from a set of graphs is easy and informative. We shall see
in detail how this is useful in Section 4.5. If one want the nodes to carry semantic
information, the formalism is easily modifiable with the adding of a semantic labeling
function, without modifying the core of its generative mechanism.

It is worth noticing that other rewriting formalism’s have been introduced for graph
data in particular practical contexts (see for instance the work on 3G map L-systems
for fruit modeling [Bohl et al., 2015]). These types of formalism usually use a large
number of parameters and constraints on rule application which does not make them
good candidates for learning.

2An embedding is the information about how to glue the new subgraph within the rest of the graph

4.4. Properties of Plane Graph Grammars 103

4.4 Properties of Plane Graph Grammars

4.4.1 Context-freeness property

A class of grammars that has the context-freeness property corresponds to a formalism
where parts of a derivation that start from different non-terminals of a sentential form
do not interfere with each other [Courcelle, 1987]. Intuitively, this is not the case of
Plane Graph Grammars as the name of a node created during the derivation is linked
with the name of pre-existing nodes. Hence, the distinct parts of a derivation cannot
be treated in any order since the resulting PGS will not have the same node labels.

However, this only affects the names of the nodes, and if one is interested in the
structure of the generated PGS then each parts of the derivation can be done indepen-
dently. In other words, the order in which the rules are applied will generate different
PGS, but they will all be plane-isomorphic. We thus will be able to describe a derivation
tree and a parsing procedure based on the CYK algorithm for string grammars.

The following theorem states that when a PGS is derived from a non-terminal, either
it is given directly by a lexical rule, or it is the concatenation of plane graphs obtained
from non-terminals that appear together on the right handside of a production whose
left handside is the given non-terminal.

Theorem 4.3 (Context-freeness). Let G = 〈N , PL, P,A〉 be a PGG. Let (N, r) ∈ N
and H a PGS. N ⇒∗ H if and only if

• N → H in PL,

• Or

1. ∃Nx → N1
x1 . . . N

m
xm in P and

2. there exist m PGS H1, . . . Hm such that

– ∀i, 1 ≤ i ≤ m, N i ⇒∗ Hi

– H ∼=p H1 � . . . �Hm

Proof. (Sketch)
=⇒
Let N ⇒k H. There thus exists a sequence of sentential forms
(G1,L1), . . . , (Gk+1,Lk+1) such that ∀j ≤ k, Gj+1 is obtained from Gj by applying
a rule of the grammar, (G1,L1) is an initial sentential form with L1(oRG1

) = (N, a),
for some a ∈ nodes(oRG1

), and Gk+1 = H. If G2 is obtained from G1 using a lexical
rule, then k = 1 and N → H is in PL. Otherwise, the first rule is a production
Nx → N1

x1 . . . N
m
xm and G2 = [[N1

x1 . . . N
m
xm]] = 〈XG2 , EG2 ,∪1≤i≤m{[xi]} ∪ [xR]}, [xR]〉,

L2([xi]) = (N i, first(xi)), ∀i. As a rule does not modify the pre-existing nodes and
applies only to a specific face, the other steps of the derivation replace one of the faces

104 Chapter 4. On Learning from Graphs

[xi] by a PGS: no step replacing [xi], or the set of faces previously derived from [xi],
interferes with the steps that rewrite [xj], 1 ≤ j, i ≤ m, i 6= j. Hence, for all i ≤ m,
the sequence of steps that recursively rewrites [xi] generates a PGS Hi and we have
H = H1 � . . . �Hm (which is correctly defined since the outer face of Hi is [xi]

R, ∀i).
As each face [xi] of G2 is labeled by the non-terminal N i, we also have N i ⇒∗ Hi.
⇐=

Suppose ∃Nx → N1
x1 . . . N

m
xm in P and there exist m PGS H1, . . . ,Hm such that

N i ⇒∗ Hi, for all 1 ≤ i ≤ m, and H ∼=p H1 � . . . � Hm. Then the ini-
tial sentential form (G1,L1), with G1 = 〈nodes([x]), edges[x]), {[x], [xR]}, [xR]〉 and
L1([x]) = (N, first(x)), can be rewritten into the sentential form (G2,L2), with
G2 = 〈XG2 , EG2 ,∪1≤i≤m{[xi]} ∪ {[xR]}, [xR]〉 and L2([xi]) = (N i, first(xi)), ∀i (using
the rule). There then exists a sequence of sentential forms (G2,L2), . . . , (Gk,Lk) such
that Gk = 〈XGk , EGk , FH1 ∪2≤i≤m {[xi]} ∪ {[xR]}, [xR]〉 and Lk is defined only on [xi],
with Lm([xi]) = (N i, first(xi)), ∀i, 2 ≤ i ≤ m. As N2 ⇒∗ H2, there exist a sequence
of sentential forms (Gk,Lk), . . . , (Gl,Ll) that rewrite the face [x2] of G2 into a subgraph
H ′2 such that H ′2 ∼=p H2 (the label of some internal nodes of H2 can already exists in
Gk and thus another label has to be chosen). Repeating the same reasoning for the
other non-terminals of the rule, we obtain that for all 2 ≤ i ≤ m, a PGS H ′i

∼=p Hi

exists such that N ⇒∗ H ′ = H1 �H ′2 � . . . H ′m. We have H1 �H ′2 ∼=p H1 �H2, and for all
i < m H1 � . . . �Hi �H ′i+1

∼=p H1 � . . . �Hi �Hi+1. Notice that H1 � . . . �Hi and H ′i+1

are concatenable following the identity function since outer(H ′i+1) = outer(Hi+1) by
construction. This implies H ′ ∼=p H.

One of the consequences of this result is that we can define a normal form for plane
graph grammars, where the number of non-terminals on the right hand-side is exactly
two. Indeed, given any production rule Nx → N1

x1 . . . N
m
xm with m > 2, one can replace

it by two rules Nx → N ′x′N
m
xm and N ′x′ → N1

x1 . . . N
m−1
xm−1

, with x′ = outer({[xi] : 1 ≤
i ≤ m−1}), which are both correctly defined rules. The set of graphs that N can derive
is unchanged and the process can be recursively reproduced until only 2 non-terminals
appear in each right hand-sides.

We will consider in the rest of this chapter that all the PGG are in such a normal
form.

4.4.2 A Parsing Algorithm

Theorem 4.3 provides a straightforward parsing algorithm, given as pseudo-code in
Algorithm 4.1.

Proposition 4.4. For all PGS G, Algorithm 4.1 terminates and yields TRUE iff G ∈
L(G).

4.4. Properties of Plane Graph Grammars 105

Algorithm 4.1: Plane graph grammar parsing algorithm
Input: A PGG G = 〈N , PL, P,A〉 in normal form and a PGS G
Output: TRUE if G ∈ L(G), FALSE otherwise
foreach N ∈ A do

if DERIV E(G, N,G) then
return TRUE

return FALSE

Algorithm 4.2: DERIVE Procedure
Input: A PGG G = 〈N , PL, P,A〉 in normal form, a non-terminal N ∈ N and a

PGS G
Output: TRUE if N ⇒∗G G, FALSE otherwise
if N → H ∈ PL and H ∼=p G then

return TRUE
foreach Nx → N1

yN
2
z ∈ P do

if ∃H1, H2 such that DERIVE(N1, H1) and DERIVE(N2, H2) and
G ∼=p H1 �H2 then
return TRUE

return FALSE

Proof. Algorithm 4.1 is nothing else than an algorithmic version of the context-freeness
lemma. Since the size of the patterns H1 and H2 is smaller than the size of H, the
algorithm must eventually terminate.

Since there is only a finite set of lexical rules and of productions in G, there are
only polynomially many possibilities to consider in steps (1) and (3) of the DERIVE
procedure. The plane-isomorphism can also be tested in polynomial time. Hence, there
is a single point that may cause an exponential running time of the algorithm: the
number of candidates H1 and H2 to test in step (4). Therefore we aim at finding a
condition to impose on L(G) that implies a polynomial upper bound on the number of
such candidates. The following restriction is inspired by the k-separability, defined for
hyperedge replacement grammars [Lautemann, 1989].

Definition 4.15 (Rank). For k in N, the k-rank of a PGS G is the number of patterns
of G whose outer face contains k nodes. For every language L of PGS, rankL : N→ L
is defined by

rankL(n) = max1≤k≤order(L,n){k-rank(G) : G ∈ L and |G| ≤ n}

where order(L, n) = max{|outer(S)| : S is a pattern of G ∈ L and |G| ≤ n}.

106 Chapter 4. On Learning from Graphs

Note that the order of a language L and an integer n is the maximal number of
nodes of the outer face of a pattern of a plane graph G in L whose size is at most n.

Informally, the rank for n of a language considers the graphs of the language whose
size are less than n and corresponds to the maximum number of patterns having the
same number of nodes on the outer face among all of these graphs. In other word, to
evaluate rankL(n) for a given n, we need to look at all the graphs of size less than n
in the language, for each of these graphs to count how many patterns have the same
number of nodes on their outer face, and to return the maximum obtained.

The idea behind the rank of a plane graph language is to link the size of the PGS of
the languages with the number of their subgraphs that have an outer face of a given size.
The aim is to tackle the combinatorial explosion that can occur when one is checking
whether a rule can be applied. Indeed, to test if a rule Nx → N1

yN
2
z can be applied to

derived a PGS G, Algorithm 4.2 needs to be recursively called on all decompositions of
G into two patterns whose outer faces contain |y| and |z| nodes. In general, the number
of such decompositions is exponential in the size of the grammar: this is the case for
example of the PGS that correspond to a checkerboard.

Proposition 4.5. Let G be a PGG. If rankL(G)(n) is polynomial in n then Algorithm 4.1
can be implemented in time polynomial in the size of its input.

Proof. Given a production Nx → N1
yN

2
z only patterns of |y| (resp. |z|) nodes on the

outer face can be derived from N1 (resp. N2). As rankL(G(n) is polynomial, there are
a polynomial number of patterns with |y| (resp. |z|) external nodes on outer face. The
number of candidates H1, H2 is thus polynomial if G ∈ L(G).

4.5 Learning substitutable plane graph languages

This section shows how plane graph grammars are good candidates for Grammatical
Inference: their nice properties allow to extend works on distributional learning of string
grammars. The simplest string class that has been proven learnable in this approach,
is the one of substitutable context-free languages [Clark and Eyraud, 2007].

4.5.1 Substitutable plane graph languages

The core of the learning algorithm for this class is to observe the distribution of sub-
strings into contexts and then to use the simple properties of substitutable languages to
infer a correct grammar. For this reason we first need a notion of context to transpose
this work to plane graph languages.

Definition 4.16 (Plane context). A plane context is a tuple C = 〈X,E, F, h, o〉 such
that (1) 〈X,E, F, o〉 is a plane graph system and (2) h ∈ F \ {o} is a distinguished face
called the hole of context C and (3) h has no pendant edge.

4.5. Learning substitutable plane graph languages 107

The plane-isomorphism relation is extended to contexts in the obvious way: two
contexts C = 〈X,E, F, h, o〉 and C ′ = 〈X ′, E′, F ′, h′, o′〉 are plane-isomorphic if
〈X,E, F, o〉 ∼=p 〈X ′, E′, F ′, o′〉 and the image of h by the bijection on the faces is h′, i.e.
ξ(h) = h′.

Let S = 〈X,E, F, o〉 and S′ = 〈X ′, E′, F ′, o′〉 be two PGS such that X ∩ X ′ = ∅.
Let f ∈ F and f ′ ∈ F ′ be two faces. Every 1-to-1 mapping φ : nodes(f) → nodes(f ′)

can be extended to the set of all vertices X as follows: φ̂ : X → nodes(f ′) ∪ X such
that φ̂(a) = φ(a) if a ∈ nodes(f) and φ̂(a) = a otherwise. It can then be extended in
the usual way to sets of nodes, faces, sets of faces, to PGS, and to plane contexts.

We can now define the gluing or wrapping operation.

Definition 4.17 (Gluing). Let C = 〈X,E, F, h, o〉 be a context and S = 〈X ′, E′, F ′, o′〉
be a PGS such that X ∩ X ′ = ∅. Let φ be a bijective function from nodes(o′) to
nodes(h). The gluing of S into C following gluing function φ, denoted C �φ S, is the
PGS G = 〈XG, EG, FG, oG〉 such that

• XG = X ∪X ′ \ nodes(o′),

• EG = E ∪ φ̂(E′),

• FG = (F \ {h}) ∪ φ̂(F ′ \ {o′}) and

• oG = o.

Notice that S is a pattern of G.

Figure 4.6 gives an example of a plane context in (a), of a plane graph in (b), of the
gluing in (c) of the graph in (b) into the context in (a).

We now need to define the notion of substitutability. Informally, two patterns of a
given language are substitutable if the fact that they appear in the same context once,
implies they always appear in the same context, glued in a similar way.

Definition 4.18 (Substitutability). Two PGSG = 〈X,E, F, o〉 andG′ = 〈X ′, E′, F ′, o′〉
are substitutable w.r.t. a plane graph language L if whenever there exist two contexts
C and C ′, C ∼=p C

′, and two gluing functions φ and φ′ such that C �φ G is in L and
C ′ �φ′ G′ is in L, then for all contexts C ′′,(

∃φ1 : C ′′ �φ1 G ∈ L
)
⇐⇒

(
∃φ2 : C ′′ �φ2 G′ ∈ L

)
where φ1 and φ2 are gluing functions such that, for all a ∈ nodes(o), for all b ∈
nodes(o′), if φ(a) = φ′(b) then φ1(a) = φ2(b).

If G and G′ are substitutable w.r.t. a language L, we will note G ≡LS G′, or G ≡S G′
when there is no ambiguity.

The following lemma states that substitutability is not affected by plane-
isomorphism.

108 Chapter 4. On Learning from Graphs

22

3

1

4
5

h
14

13

12

11

10 22

3

1

4
5

10

(a) (b) (c)

Figure 4.6: (a) A context whose hole is the face h. (b) A plane graph. (c) The gluing of
the graph into the context following the gluing function φ(11) = 1, φ(12) = 2, φ(13) =

5, φ(14) = 4.

Lemma 4.6. Let G,G′ and G′′ be PGS. If G ∼=p G
′ and G′ ≡S G′′ then G ≡S G′′.

Proof. (Sketch) Let χ be the 1-to-1 function that maps the vertices of G onto those
of G′ (as in the definition of plane isomorphism). Let C be a context such that there
exists a gluing functions φ such that C �φ G′′ in L. As G′ ≡S G′′ there exists φ′ such
that C�φ′G′ in L. By construction we have C�φ′oχG ∼=p C�φ′G′ and thus C�φ′oχG
is in L.

We can then define substitutable plane graph languages:

Definition 4.19 (Substitutable languages). A plane graph language L is substitutable
iff all pairs of patterns that share a context are substitutable w.r.t. L.

The following technical lemma states that substitutability in a substitutable lan-
guage is a congruence with respect to concatenation:

Lemma 4.7. Let L be a substitutable plane graph language and G1, G2, G
′
1, G

′
2 be

4 PGS s.t. both G1 and G2, and G′1 and G′2 are concatenable following the identity
function. If G1 ≡LS G′1 and G2 ≡LS G′2 then G1 �G2 ≡LS G′1 �G′2
Proof. (Sketch) We index each element of the definition of a PGS by its name. For
instance XG1 are the vertices of G1, FG1�G2 are the faces of G1 �G2, oG′1�G′2 is the outer
face of G′1 �G′2.

Let C be a plane context such that there exists a gluing function φ: C �φ G1 �G2

is in L. We suppose w.l.o.g. that the set of nodes of C is distinct of the set of nodes of
the 4 PGS under consideration. We want to show that there exists a function χ such
that C �χ G′1 �G′2 ∈ L.

4.5. Learning substitutable plane graph languages 109

Let CC�φ̂(G1)
= 〈XC ∪ φ̂(XG1)∪ nodes(φ̂(oG2)), EC ∪ φ̂(EG1)∪ edges(φ̂(oG2)), (FC \

h) ∪ φ̂(FG1 \ oG1) ∪ φ̂(oRG2
), φ̂(oRG2

), oC〉. Less formally, CC�φ̂(G1)
is the context C with

G1 glued in it following φ (its hole is thus the face φ̂(oRG2
)). Notice that CC�φ̂(G1)

is
correctly defined as its faces are connected since, by definition of the concatenation,
there exists e ∈ EG1 , e ∈ edges(oG1�G2) and φ : nodes(oG1�G2)→ nodes(h). It is easy
to verify by using the definitions that CC�φ̂(G1)

�φ G2 = C �φ G1 �G2.
As G2 ≡S G′2 there exists φ′ such that CC�φ̂(G1)

�φ′ G′2 ∈ L. But CC�φ̂(G1)
�φ′ G′2

is equal by construction to C �id φ̂(G1) � φ̂′(G′2) where id is the identity function.
Using the same kind of construction, we can construct the context C

C�φ̂′(G′2)
such that

C
C�φ̂′(G′2)

�id φ̂(G1) = C �id φ̂(G1) � φ̂′(G′2) ∈ L. As G1 ≡S G′1 and φ̂(G1) ∼=p G1,
there exists φ′′ such that C

C�φ̂′(G′2)
�φ′′ G′1 ∈ L. Again, this is equivalent to write

C �id φ̂′′(G′1) � φ̂′(G′2), and as φ̂′′(G′1) � φ̂′(G′2) ∼=p G
′
1 �G′2 then by Lemma 4.6 and the

closure under plane-isomorphism of L, there exists χ: C �χ G′1 �G′2 ∈ L.

Finally, we can define a notion of congruence classes:

Definition 4.20 (Congruence classes). Given a plane graph language L and a pattern
G of a graph of the language, the congruence class of G in L, denoted dGeL (or simply
dGe), is the set of all patterns substitutable with G in L: dGeL = {G′ : G′ ≡L G}.

In a substitutable plane graph language, if two patterns appear once in the same
context, they belong to the same congruence class.

4.5.2 The Learner

Our learning algorithm is described in Algorithm 4.3.
As we are interested in the class of substitutable plane graph languages, the learning

algorithm has to deal with the distribution of contexts between subgraphs. To do so,
it computes, from a finite set S of PGS of the language, the observable congruence
classes: two PGS G and G′ are in the same observable congruence class if there exist
k ≥ 2 and G1, . . . , Gk such that G = G1, G′ = Gk, and ∀i < k, Gi and Gi+1 appear
at least once in the same context in the sample S. As in the case of strings, this
computation can be done using a substitution graph [Clark and Eyraud, 2007] or by
hashing from subgraphs to list of contexts. Notice that two PGS that are observed in
the same congruence class are substitutable but that the converse is not true in general:
two PGS that are substitutable may not be observed in the same congruence class in a
given sample.

Given a set of connected inner faces F , we define split(F) to be the set of couples
(F1, F2) such that F1∪F2 = F and GF1 and GF2 are concatenable following the identity,
where for i ∈ {1, 2}, GFi = 〈nodes(Fi), edges(Fi), Fi ∪ {outer(Fi)}, outer(Fi)〉. The

110 Chapter 4. On Learning from Graphs

Algorithm 4.3: Learning algorithm for substitutable plane graph languages
Input: A learning set of plane graph systems LS = {Gi}ni=1

Output: A plane graph grammar 〈N , PL, P,A〉
CC ← compute_observable_congruence_classes(LS);
N ← ∅; PL ← ∅; P ← ∅; A ← ∅;
foreach Observable congruence class Ci of CC do
N ← N ∪ {(N i, number_nodes(Ci))};
foreach G in Ci do
N t(G)← N i;
if G ∈ LS then
A ← A∪ {N i}

foreach G = 〈XG, EG, FG, [(a1 . . . an)R]〉 in V do
if |FG| = 2 then

PL ← PL ∪ {N t(G)a1...an → G};

else
foreach (F1, F2) ∈ split(FG \ {oG}) do

P ← P ∪ {N t(G∗)a1...am → N t(G1)b1...bn N t(G2)c1...cp} where
[b1 . . . bn] = outer(F1), [c1 . . . cp] = outer(F2), b1 = b, c1 = c and
∀i : Gi = 〈Xi, Ei, Fi ∪ {outer(Fi)}, outer(Fi)〉;

return 〈N,PL, P,A〉

function number_nodes(C) returns the number of nodes of the outer face of the graphs
in the observable congruence class C.

4.5.3 Learning result

Our learning paradigm is the one of identification in polynomial time and thick data
introduced in Definition 2.12 of Chapter 2.

Plane Graph Grammars being not totally compatible with the notion of generative
grammars (Definition 2.1), some adjustments are needed. In particular, we have to
define the notion of thickness for PGG:

Definition 4.21 (Thickness). Let G = 〈N , PL, P,A〉 be a plane graph grammar. The
thickness of G is τG = max{|ω(N)| : ∃β, x s.t. Nx → β ∈ P ∪ PL} where ω(N) =

minC{G ∈ G : N ⇒∗G G}.

This is a straightforward extension to PGG of Definition 2.11.
The requirements of the learning paradigm imply a time polynomial in the size of

4.5. Learning substitutable plane graph languages 111

the learning sample3, and a characteristic sample polynomial in the size of the target
representation and its thickness.

4.5.3.1 Time complexity

The number of patterns (and thus of contexts) that can be generated from a given PGS
can be exponential in the size of that PGS (it is the case for instance of the plane graph
corresponding to a grid, like a chest board). So the size of observable congruence classes
is in general exponential in the size of the learning sample. This is a well-known problem
while using graph grammar formalism’s as it is related to the one of having an efficient
parsing algorithm. However, the requirement of having a language of polynomial rank,
needed for efficient parsing (see Section 4.4.2) implies that the number of patterns to
considerate is polynomial in the size of the learning sample. Therefore the number
of elements that have to be taken into account to compute the congruence classes is
polynomial.

To compute these observable congruence classes, we also need to compare all pairs
of contexts to decide if they are plane isomorphic. This can be done in polynomial time
in the size of the contexts [de la Higuera et al., 2013]. For the same reason, testing
if two PGS are plane isomorphic can be done in polynomial time and thus so is the
construction of the congruence classes.

All other steps of Algorithm 4.3 are polynomial in the size of the observable con-
gruence classes.

4.5.3.2 Proof the hypothesis is not too large

The following lemma states that patterns in the sample can be generated by the output
grammar.

Lemma 4.8. If G = 〈X,E, F, o〉 is a subgraph of a sample LS, then there exists a
plane graph G′ such that N t(G)⇒∗ G′ and G ∼=p G

′.

Proof. (Sketch) The proof can be done by induction on the number of faces of the graph.
if |F | = 2, then by the construction of the grammar there is a lexical rule N t(G)an...a1 →
G with [a1 . . . an] = o. Suppose the property holds for graphs with |F | = k ≥ 2 faces.
Let F1 and F2 be two sets of connected faces such that F1 ∩ F2 = ∅ and F1 ∪ F2 =

FG \{oG}. Let G1 (resp. G2) be the PGS whose inner faces are F1 (resp. F2). We have
G1 � G2 = G. G1 and G2 are also subgraphs of LS by definition and, by construction
of the grammar, there exists a rule N t(G)a1...am → N t(G1)b1...bnN t(G2)c1...cn with
[a1 . . . am] = o, [b1 . . . bn] = outer(F1)(= oG1) and [c1 . . . cp] = outer(F2)(= oG2).

This rule can be applied to the sentential form 〈G′,L′〉, with G′ =

〈X ′, E′, {oR, o}, o〉, L′(oR) = (N t(G), a1). It gives the sentential form 〈G′′,L′′〉, with
3Note that the size of a set of plane graphs LS is defined as |LS| =

∑
G∈LS |G|.

112 Chapter 4. On Learning from Graphs

G′′ = 〈X ′′, E′′, {φ̂(outer(F1)), φ̂(outer(F2)), o}, o〉, L′′(outer(F1)) = (N t(G1), b1) and
L′′(outer(F2)) = (N t(G2), c1) By the inductive hypothesis there exist G′1 and G′2 such
that N t(G1) ⇒∗ G′1, N t(G2) ⇒∗ G′2, G1

∼=p G
′
1 and G2

∼=p G
′
2. G′1 and G′2 might

not be concatenable, as they can have inner nodes that share the same label. However,
w.l.o.g. one can change the labels of one of the graph, for instance G′1, in order to
obtain a PGS G′′1 that is plane-isomorphic to G1 and concatenable to G′2. Thus we have
N t(G)⇒∗ G′′1 �G′2 and, by Lemma 4.2, G ∼=p G

′
1 �G′2.

Lemma 4.9. For all subgraphs G of a learning sample LS, for all PGS G′, if N t(G)⇒∗
G′ then G and G′ are substitutable.

Proof. (Sketch) Let G = 〈X,E, F, o〉. As the lemma holds for G′ ∼=p G, we restrict
ourselves to the case G′ 6∼=p G. By induction on the length of the derivation k. If
k = 1, then it means that a lexical production N t(G)a1...an → G′′ is applied and that
G′′ ∼=p G

′. By the construction of the lexical rules, it means that G′′ is a subgraph of
LS that appears in the congruence class than G and thus G and G′′ are substitutable.
Lemma 4.6 implies that G′ ≡S G.

Suppose this is true for all derivations of length strictly less than k and let G′ be
a PGS obtained from N t(G) using k derivation steps. It means that there exists a
sequence of sentential form S1, . . . , Sk, such that ∀i, Si is derived from Si−1, Si =

〈Gi,Li〉 with G1 = 〈X1, E1, {oR, o}, o〉, L1(oR) = (N t(G), a) for some a ∈ nodes(o),
and Gk = G′, Lk being undefined for all faces of Gk. S2 is obtained from S1 applying
a rule N t(G)a1...am → N t(GF1)b1...bnN t(GF2)c1...bp , where outer(F1) = [b1 . . . bn] and
outer(F2) = [c1 . . . cp], GFi = 〈XFi , EFi , Fi ∪ outer(Fi), outer(Fi)〉, for i ∈ {1, 2}.
By construction, there exists G∗ in the same observable congruence class of G such
that G∗ = GF1 � GF2 and thus GF1 � GF2 ≡S G. There exist G′F1

and G′F2
such that

N t(GF1) ⇒∗ G′F1
, N t(GF2) ⇒∗ G′F2

and Gk = G′F1
� G′F2

. By recursion, G′F1
≡S GF1

and G′F2
≡S GF2 . As Lemma 4.7 holds, we have G′F1

� G′F2
≡S GF1 � GF2 and thus

Gk ≡S G.

Theorem 4.10. For all samples of a language L, the output G of Algorithm 4.3 is such
that L(G) ⊆ L.

Proof. Let G ∈ L(G). Then there exists a plane graph G′ in the learning sample and
a plane graph G′′ such that N t(G′) ∈ A, N t(G′) ⇒∗ G′′ and G′′ ∼=p G. Lemma 4.9
states that G′′ and G′ are substitutable and thus G ≡LS G′. As G′ is an element of L,
G ∈ L.

4.5.3.3 Proof the hypothesis is large enough

To prove that the hypothesis is large enough, we need to define a characteristic set,
i.e. a subset of the target language L∗ which ensures that the output G of the algorithm
is such that L(G) ⊇ L∗.

4.5. Learning substitutable plane graph languages 113

Construction of a characteristic sample. Let G∗ = 〈N∗, PL∗, P∗,A∗〉 be a target
grammar. We will assume without loss of generality, that G∗ is reduced, that is to say
for every non-terminal N , (1) there exists a derivation that starts from an axiom and
labels at least one face with N , and (2) a PGS without any non-terminal labeling a face
can be derived from a sentential form where one face is labeled by N . We are going
to define a set CS(G∗) of plane graphs of L∗, such that Algorithm 4.3 will identify L∗
from any superset of CS(G∗).

Given a non-terminal Nk, we define C(Nk) to be one of the smallest con-
text 〈XGk , EGk , FGk , hk, oGk〉 such that there exists a sequence of sentential forms
〈G1,L1〉, . . . , 〈Gk,Lk〉 with 〈G1,L1〉 being an initial sentential form such that FG1 =

[oGk , o
R
Gk

], L1(oRGk) = (N i, a1), N i ∈ A∗, and ∀i, 1 ≤ i < k, 〈Gi+1,Li+1〉 is obtained
from 〈Gi,Li〉 by applying a rule of G∗, Lk(hk) = (Nk, ak) for some ak ∈ nodes(hk), Lk
is undefined on other faces.

We also define G(Nk) to be one of the smallest PGS such that Nk ⇒∗G∗ G(Nk).
We can now define the characteristic set CS(G∗). For each production N i

x → N j
yNk

z

in P∗, we add to CS(G∗) the PGS C�φ χ̂(G1)� χ̂(G2) where φ : nodes([x])→ nodes(h)

is a bijective function, C = C(N i), G1 = G(N j), G2 = G(Nk) and χ : nodes(oG1) ∪
nodes(oG2)→ nodes([y])∪nodes([z]) is a bijective function such that χ̂(oG1) = [y] and
χ̂(oG2) = [z]. For each lexical rule N i

x → G in PL∗ we add to CS(G∗) the PGS C �φ G
where φ : nodes([x])→ nodes(h) is a bijective function and C = C(N i).

Lemma 4.11. Given any PGG G∗, the size of CS(G∗) is polynomial in the size and
thickness of G∗
Proof. The cardinality of CS(G∗) is at most |P∗| + |PL∗| by construction, which is
clearly polynomially bounded. Moreover, the size of each element in the set is at most
the thickness of the grammar times the number of rules needed to generate this element
(by definition). This number is smaller than (|P∗| + |PL∗|)|P∗||PL∗| by definition of
C(·) and G(·) (no recursivity is possible to generate these elements). Therefore, the
size of this characteristic sample is bounded by (|P∗|+ |PL∗|)2|P∗||PL∗|τG∗ and then the
size of the characteristic sample is polynomial in the size of the target PGG and its
thickness.

Notice also that if there exists a polynomial-sized structurally complete sample then
the size of our characteristic set is polynomial in the size of the target. Indeed, one
can show that the definition of CS(G∗) corresponds to a smallest structurally complete
set of G∗. This implies that if we show that this set validates the conditions to be
characteristic (Definition 2.7), the algorithm will fulfills the requirements of the IPTscD
paradigm of Definition 2.10.

Convergence. We must show that for any substitutable plane graph grammar G∗, if
the sample LS contains the characteristic sample CS(G∗), then L(G) = L(G∗) where

114 Chapter 4. On Learning from Graphs

G = 〈N , PL, P,A〉 is the inferred grammar.

Lemma 4.12. If N ⇒∗G∗ G then there exists a subgraph G′ of the learning sample and
a plane graph G′′ such that N ⇒∗G∗ G

′, N t(G′)⇒∗G G′′ and G′′ ∼=p G.

Proof. (Sketch) By recursion on the number of derivation steps k in G∗. If k = 1 then
there exists N → G′ in PL∗, G′ ∼=p G. By construction of the characteristic sample, G′

is a subgraph of LS and thus N t(G′)→ G′ is in PL.
Suppose it is true for all derivations of size less than k > 1. There exists a sequence

of sentential forms 〈G1,L1〉, . . . , 〈Gk,Lk〉 such that 〈G1,L1〉 is an initial sentential form
with L(f1) = (N, a), Si+1 is obtained from Si by using a rule of G∗, Gk = G and Lk is
not defined for any face. Let Nx → N i

yN
j
z be the rule applied to S1 to obtain S2. By

construction, there exist G1 and G2, N i ⇒∗G∗ G1, N j ⇒∗G∗ G2, and G1 �G2 = G.
By recursion, there exist two subgraphs of LS, G′1 and G′2, and two PGS G′′1 and

G′′2 such that N i ⇒∗G∗ G
′
1, N j ⇒∗G∗ G

′
2, N t(G′1)⇒∗G G′′1, N t(G′2)⇒∗G G′′2 and G′′1 ∼=p G1,

G′′2
∼=p G2. Notice that this implies there exists a renaming function φ on the vertices

of the external faces of G′′1 and G′′2 such that φ̂(G′′1) and φ̂(G′′2) are concatenable and
φ̂(G′′1) � φ̂(G′′2) ∼=p G (Lemma 4.2).

By construction of the characteristic sample, there exist two subgraphs G′′′1 and G′′′2
of LS such that G′′′1 � G′′′2 is a subgraph of LS, G′′′1 ∼=p G(N i) and G′′′2 ∼=p G(N j). As
L(G∗) is a substitutable language, we have G′′′1 ≡S G′1 and G′′′2 ≡S G′2. Thus G′1 and
G′′′1 appear in the same component and thus correspond to the same non-terminal (and
similarly for G′′′2 and G′2). As there is a rule N t(G′′′1 �G′′′2)x → N t(G′′′1)yN t(G′′′2)z in P ,
we have N t(G′′′1 �G′′′2)⇒∗G φ̂(G′′1) � φ̂(G′′2).

Theorem 4.13. Let G∗ be a target plane graph grammar corresponding to a sub-
stitutable plane graph language. From any sample containing CS(G∗) Algorithm 4.3
returns a grammar G such that L(G) ⊇ L(G∗).

Proof. If G ∈ L(G∗) then there exists N ∈ A∗ such that N ⇒∗G∗ G. By Lemma 4.12,
it implies that there exists a subgraph G′ of the learning sample and a plane graph G′′

such that G′ ∈ L(G∗), N t(G′) ⇒∗G G′′ and G′′ ∼=p G. By construction of the grammar,
N t(G′) ∈ A and thus G ∈ L(G).

This last theorem allowed the following learning result:

Theorem 4.14. Algorithm 4.3 identifies in polynomial time and thick data the class
of substitutable plane graph languages with polynomial rank.

Proof. Let G∗ be the target plane graph grammar corresponding to a substitutable
plane graph language and G the returned grammar from a sample containing CS(G∗).
By Theorem 4.13, we have L(G∗) ⊆ L(G). Theorem 4.10 states that L(G) ⊆ L(G∗).
Therefore, L(G) = L(G∗). The discussion on time complexity of Section 4.5.3.1 and
Lemma 4.11 allow to conclude.

4.6. Discussion 115

4.6 Discussion

In addition to substitutability, other restrictions on the learned class have been done,
explicitly or not. First, the grammar formalism implies that the number of nodes of the
outer face of any generated PGS has to be bounded: otherwise an infinite number of
axioms would be needed. Then, the requirement of having a polynomial rank, that is
used both for efficient parsing and for the polynomial computation time of the learning
algorithm, is clearly restrictive.

Despite all these issues, this chapter describes, to our knowledge, one of the first
positive formal learning result for a non-trivial class of graph grammars. The work on
substitutable string languages [Clark and Eyraud, 2007] has been the starting point of
several positive learning results on more complex classes, and similar developments are
likely to be tractable for plane graph languages. It seems to be the case for instance of
the extension to contexts with several holes [Yoshinaka, 2011] using multiple context-
free grammars (that are a context-sensitive formalism with a polynomial time parsing
algorithm). It might also be possible to adapt the learning algorithm in a way that
allows a learning result in the PAC paradigm [Shibata and Yoshinaka, 2013].

Then, the works on strings grammars that required both a set of positive examples
and a membership oracle (see for instance the brief overview at the end of Chapter 3)
can possibly be extended to graph grammars. Indeed, the recent extension to tree
grammars [Kanazawa and Yoshinaka, 2016, Clark et al., 2016] provides a good witness
for the feasibility of such a goal.

Finally, due to the interest of planar graphs in image processing [Samuel et al., 2010],
it is likely that the learning of plane graph grammars, and more generally grammatical
inference techniques, could be used to tackle image classification challenges, such as
concept detection or content-based image retrieval. The idea would be to use the
transform the images into plane graphs, using Samuel et al.’s algorithm, to learn a
PDD from this set of graphs, and to use the learned grammar to mine new images.
Of course, demonstrating it can outperformed current deep learning heuristics on these
tasks will necessitate important investments and efforts, comparable to the one artificial
neural networks benefited during the past ten years.

Bibliography

R. Bailly, F. Denis, and G. Rabusseau. Recognizable series on hypergraphs. In Proc. of
the International Conference on Language and Automata Theory and Applications,
pages 639–651. LNCS 8977, 2015. 86

E. Bohl, O. Terraz, and D. Ghazanfarpour. Modeling fruits and their internal structure
using parametric 3gmap l-systems. The Visual Computer, 31(6-8):819–829, 2015. 102

116 Bibliography

R. Brijder and H. Blockeel. On the inference of non-confluent NLC graph grammars.
Journal of Logic and Computation, 23(4):799–814, 2011. 86

A. Clark and R. Eyraud. Identification in the limit of substitutable context-free lan-
guages. In Proc. 16th Int. Conference on Algorithmic Learning Theory (ALT’05),
pages 283–296. LNCS 3734, 2005. 86

A. Clark and R. Eyraud. Polynomial identification in the limit of substitutable context-
free languages. Journal of Machine Learning Research, 8:1725–1745, 2007. 86, 88,
106, 109, 115

A. Clark, M. Kanazawa, G. M. Kobele, and R. Yoshinaka. Distributional learning of
some nonlinear tree grammars. Fundamenta Informaticae, 146(4):339–377, 2016. 115

D. J. Cook and L. B. Holder. Graph-based data mining. IEEE Intelligent Systems, 15
(2):32–41, 2000. 86

C. Costa Florêncio. Identification of hyperedge-replacement graph grammars. In Proc.
of the International Workshop on Mining and Learning with Graphs, pages 19–21.
Leuven, Belgium, 2009. 86

B. Courcelle. An axiomatic definition of context-free rewriting and its application to
nlc graph grammars. Theoretical Computer Science, 55:141–181, 1987. 103

G Damiand and P. Lienhardt. Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. A K Peters/CRC Press, 2014. 119

C. de la Higuera, J.-C. Janodet, E. Samuel, G. Damiand, and C. Solnon. Polynomial
algorithms for open plane graph and subgraph isomorphisms. Theoretical Computer
Science, 498:76–99, 2013. 89, 90, 91, 92, 94, 111

F. Drewes, H.-J. Kreowski, and A. Habel. Hyperedge replacement graph grammars. In
Handbook of Graph Grammars, pages 95–162. Rozenberg and Ehrig [1997], 1997. 87,
102

J. Engelfriet. Tree automata and tree grammars, 1975. DAIMI FN-10 (Lecture Notes),
Aarhus University. 95

R. Eyraud, J.-C. Janodet, and T. Oates. Learning substitutable binary plane graph
grammars. In Proc. the International Conference on Grammatical Inference, pages
114–128. JMLR Worshops and Conference Proceedings 21, 2012. 86, 88

R. Eyraud, J.-C. Janodet, T. Oates, and F. Papadopoulos. Designing and learning sub-
stitutable plane graph grammars. Fundamenta Informaticae, 146(4):403–430, 2016.
86, 88

Bibliography 117

I. Fáry. On straight line representation of planar graphs. Acta Univ Szeged. Sect. Sci.
Math, 11:229–233, 1948. 88

E. Fusy. Combinatoire des graphes planaires et applications algorithmiques (in English).
PhD thesis, Ecole Polytechnique - ParisTech, 2007. 88

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979. 87

A. Gibbons. Algorithmic graph theory. Cambridge University Press, 1985. 90

E. Gold. Language identification in the limit. Information and Control, 10(5):447–474,
1967. 88

Zaïd Harchaoui and Francis R. Bach. Image classification with segmentation graph
kernels. In Proc. of the Conference on Computer Vision and Pattern Recognition.
IEEE Computer Society, 2007. 86

J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in the presence
of isomorphism. In Proc. of the International Conference on Data Mining, pages
549–552. IEEE Computer Society, 2003. 86

E. Jeltsch and H.-K. Kreowski. Grammatical inference based on hyperedge replacement.
In Proc. of the International Workshop on Graph Grammars and their Application to
Computer Science, pages 461–474. LNCS 532, 1991. 86

I. Jonyer, L. B. Holder, and D. J. Cook. MDL-based context-free graph grammar
induction. International Journal of Artificial Intelligence Tools, 13:65–79, 2003. 86

H. Kadri, M. Ghavamzadeh, and P. Preux. A generalized kernel approach to structured
output learning. In Proc. of the International Conference in Machine Learning, pages
471–479. JMLR Workshops and Conference Proceedings 28, 2013. 87

M. Kanazawa and R. Yoshinaka. Distributional learning and context/substructure enu-
merability in nonlinear tree grammars. In Proc. of Formal Grammar, pages 94–111,
2016. 115

A. Kasprzik and R. Yoshinaka. Distributional learning of simple context-free tree gram-
mars. In Proc. of the International Conference on Algorithmic Learning Theory, pages
398–412. LNAI 6925, 2011. 86, 88

J. Kukluk, L. Holder, and D. Cook. Inference of edge replacement graph grammars.
International Journal on Artificial Intelligence Tools, 17(3):539–554, 2008. 86

C. Lautemann. The complexity of graph languages generated by hyperedge replacement.
Acta Informatica, 27(5):399–421, 1989. 105

118 Bibliography

Pascal Lienhardt. N-dimensional generalized combinatorial maps and cellular quasi-
manifolds. International Journal of Computational Geometry and Applications, 4(3):
275–324, 1994. 119

T. Matsuda, H. Motoda, and T. Washio. Graph-based induction and its applications.
Advanced Engineering Informatics, pages 135–143, 2002. 86

M. Nagl. Formal languages of labelled graphs. Computing, 16:113–137, 1976. 101

G. Rozenberg and H. Ehrig. Handbook of Graph Grammars and Computing by Graph
Transformation, volume 1–3. World Scientific, 1997. 86, 116

E. Samuel, C. de la Higuera, and J.-C. Janodet. Extracting plane graphs from images. In
Proc. of the International Workshop on Structural and Syntactic Pattern Recognition,
pages 233–243. LNCS 6218, 2010. 115

C. Shibata and R. Yoshinaka. Pac learning of some subclasses of context-free gram-
mars with basic distributional properties. In Proc. of the International Conference
in Algorithmic Learning Theory, pages 143–157. LNCS 8139, 2013. 115

S. Vishwanathan, N. Schraudolph, R. Imre Kondor, and K. Borgwardt. Graph kernels.
Journal of Machine Learning Research, 11:1201–1242, 2010. 87

H. Whitney. Non-separable and planar graphs. Proc. of the National Academy of
Science, U.S.A., 17(2):125–127, 1931. 102

R. Yoshinaka. Identification in the limit of (k,l)-substitutable context-free languages.
In Proc. of the International Conference in Grammatical Inference, pages 266–279.
LNAI 5278, 2008. 86

R. Yoshinaka. Efficient learning of multiple context-free languages with multidimen-
sional substitutability from positive data. Theoretical Computer Science, 412(19):
1821–1831, 2011. 115

Proof of Theorem 4.1

In this appendix, we prove that if a PGS S = 〈X,E, F, o,D〉 is valid, then it denotes
a plane graph. Let us remark that 〈X,E〉 is a connected simple graph by assumption.
Moreover, Condition (1) of Def. 4.2 ensures that the boundary of every face is made of
well-defined edges. Typically, no face can be described with a boundary like [xx . . .],
and if a boundary like [xy . . .] appears, then {x, y} is an edge. Notice that sets X and
E are redundant in a valid PGS, since we can compute them from the boundaries of
the faces.

Bibliography 119

Now, in order to prove Theorem 4.1, we are going to show that a valid PGS actually
defines a 2D-combinatorial map M = 〈D,α, β〉, thus a structure such that D is a finite
set of darts, α : D → D is a permutation over D (that is, a one-to-one mapping) and
β : D → D is an involution over D (that is, a one-to-one mapping such that β◦β(d) = d

for all d ∈ D). The semantics of combinatorial maps and equivalent formalism’s such
as generalized maps has been pioneered by Lienhardt [Lienhardt, 1994].

Let us first define the set of darts as follows: D = { ~xy : ∃f ∈ F,∃u ∈ X∗,D(f) =

[xyu]}. We now define mapping β : D → D by declaring β(~xy) = ~yx. We claim that β
is well-defined and obviously an involution over D. Indeed, if ~xy ∈ D, then there exists
a face f ∈ F such that D(f) = [xyu] for some u ∈ X∗. By Condition (1) of Def.4.2, we
deduce that pair {x, y} is an edge. So by Condition (2), there exists a face f ′ ∈ F such
that D(f ′) = [yxv] for some v ∈ X∗, thus ~yx ∈ D.

The definition of α : D → D is a bit more intricate. Consider a dart ~xy ∈ D. Then
there exists an unique face f ∈ F such that D(f) = [xyu] for some u ∈ X∗. We can
assume without loss of generality that |u| > 0. Otherwise, face f is bounded by a single
edge, and as the graph 〈X,E〉 is connected, this graph is actually reduced to a single
edge, thus the property straightforwardly holds. Hence, we assume that there exists
z ∈ X such that D(f) = [xyzu] for some u ∈ X∗, and we set α(~xy) = ~yz.

We claim that α is a permutation over D. Firstly, any dart ~xy has a unique image
by α. Indeed, suppose that α(~xy) = ~yz. By Condition (2) of Def.4.2, there exists an
unique face f ∈ F such that D(f) = [xyzu] for some u ∈ X∗. So if ~xy was α-sewn
with another dart ~yz′, then we would have D(f) = [xyzuxyz′v] for some u, v ∈ X∗. By
Condition (3), we have z = z′ in this case.

Secondly, α is injective: suppose that α(~zx) = ~xy and α(~z′x) = ~xy. By Condition
(2) of Def. 4.2, there exists an unique face f ∈ F such that D(f) = [xyzu] for some
u ∈ X∗. If both ~zx and ~z′x are α-sewn with dart ~xy, then we have D(f) = [zxyuz′xyv]

for some u, v ∈ X∗. By Condition (3), we also have z = z′ in this case.
Finally, thanks to Condition (4) of Def. 4.2, the genus [Damiand and Lienhardt,

2014] of map M is null, so it can be embedded on a sphere with no crossing edges.
Moreover, the fact that we distinguish face o as the external face in the PGS allows
us to (1) eliminate this face from the map and (2) continuously deform the sphere into
a plane so that we finally get a plane graph (remember that a plane is isomorphic to
a sphere minus a point). Note that if Condition (4) does not hold, then a PGS may
denote a drawing with no crossing edges on a surface whose genus is > 0, thus a torus
with k > 0 holes.

Part III

Functional Learning

Chapter 5

On Learning with a Known Domain

Contents
5.1 Introduction . 124
5.2 Preliminaries . 125
5.3 Representations of Subsequential Functions 126

5.3.1 Traditional Subsequential Transducers 126
5.3.2 Delimited Subsequential Transducers 127
5.3.3 Onward Transducers . 129

5.4 Deriving an Onward DSFST . 130
5.5 Learning Paradigm . 131
5.6 Target Classes . 132
5.7 Learning Algorithm . 132
5.8 Learning Result . 134
5.9 Demonstrations . 136

5.9.1 Input Strictly Local Functions . 136
5.9.2 Non-ISL Phonological Processes 137
5.9.3 Morphological Parsing . 138

5.10 Conclusion . 138
Bibliography . 139

Context of this work

This chapter concerns researches that have been done in collaboration with members of
the Department of Linguistics and Cognitive Science of University of Delaware, USA.
During a two and half years stay in US East Coast, and another 1 year stay in the same
region, together with Jeffrey Heinz (and James Rogers of the Earlham College during
the first months) we weekly animated a research group on computational linguistics and
grammatical inference. This group was mainly composed of graduate students. Two of
them were particularly invested in the group which allowed to deepen the collaboration:
Jane Chandlee who was starting as a PhD candidate (now enjoying a tenure-track at the

124 Chapter 5. On Learning with a Known Domain

linguistic department of Haverford College), and Adam Jardine who was just starting
his graduate school (now an assistant professor at the linguistic department of Rutgers
University). Their enthusiasm for the field led to several publications, that forms the
scientific content of this part of the HDR, and to an important involvement all along
their PhD and after (membership in dissertation proposal and PhD defense committees,
regular discussions, on-going works, ...).

The content of this chapter is based on the first work we published together [Jardine
et al., 2014]. The paper was tittled Very efficient learning of structured classes of
subsequential functions from positive data and was published in the proceedings of the
12th International Conference on Grammatical Inference.

Here, and in the following chapter, the learning goal is different than the usual
one in grammatical inference. Indeed, while we usually aim at learning the largest class
possible, these works address the efficient learnability of the smallest class that contains
all phonological/morphological processes.

5.1 Introduction

String transductions are functions from strings to strings. They have been extensively
studied in theoretical computer science (see the survey from Filiot and Reynier [2016] for
a recent overview), and can commonly be found in many applicative fields, from speech
processing (see for instance the work of Mohri et al. [2002]) to software engineering (a
recent example is the article from Veanes et al. [2012]).

One of the most important grammatical inference results for learning string trans-
ductions is OSTIA [Oncina et al., 1993], which identifies in the limit total subsequential
functions. Its behavior is not unlike that of RPNI, upon which it is based. de la Higuera
[2010] provides an up-to-date treatment of OSTIA. More recent work on learning string
transductions has focused on learning the entire class of regular relations or even larger
classes [Clark, 2011].

This chapter focuses on proper subclasses of subsequential functions and presents
an algorithm that identifies each class from positive data. This result is interesting for
3 main reasons. First, OSTIA is unable to learn partial functions exactly, while the
classes identified exactly in the present work include partial functions. Second, the al-
gorithm we provide is able to learn in linear time and with a characteristic sample that
is quadratic with respect to the size of the target transducer. This is an improvement
over OSTIA, which, while polynomial, requires cubic computation time and its conver-
gence is ensured only if the data available is cubic in the size of the target transducer.
Third, this algorithm is applicable to infinitely many classes that contain infinitely many
transductions.

The reason why this algorithm is possible is because each proper subclass comes
with a significant amount of prior knowledge. In particular, we define a subclass of

5.2. Preliminaries 125

subsequential functions in terms of a finite-state structure. Essentially, the states and
the transitions of the transducer are provided and only the output labels on the transi-
tions are missing. In this way, these results are analogous to those of Heinz and Rogers
[2013], where the structure of the automata is fixed in advance to define an efficiently
learnable class of formal languages.

Such prior knowledge may seem undesirable, especially for cases where it is not
available. However, for domains where such prior knowledge is available, it would be
senseless to not use it. We provide such domains from linguistics, in particular phonol-
ogy and morphology. Specifically, we show that such a structure characterizes the In-
put Strictly k-Local functions introduced by Chandlee [2014] and detailed in Chapter 6.
This class, which Chandlee shows includes significantly many phonological and morpho-
logical processes, represents one way to generalize the Strictly k-Local formal languages
[McNaughton and Papert, 1971] to transductions. The few phonological processes that
are not Strictly k-Local involve long-distance dependencies, and we show that these too
are learnable, again provided a priori knowledge of the relevant finite-state structure.

In addition, when such prior knowledge is not available, one can expect to learn
the domain from the data: it corresponds to regular languages for which grammatical
inference provides several learning algorithms that used only positive examples for sub-
classes. This is the case for instance of the Strictly k-Local Languages [Garcia et al.,
1990] and of k-Reversible Languages Angluin [1982] which are identifiable from positive
data.

This chapter is organized as follows. Section 5.2 presents the mathematical nota-
tions that will be used throughout. Section 5.3 introduces subsequential finite state
transducers, including the traditional definition, an alternative definition that we will
be assuming throughout, and the particular type known as onward transducers, which
will be crucial for the learning algorithm. Section 5.4 shows how to convert any subse-
quential FST into an onward one. Section 5.5 presents the adaptation of the learning
paradigm of identification in polynomial time and data (Definition 2.8) to transduction
and provides a stronger reformulation. Section 5.6 introduces empty transducers, which
will provide the learner’s a priori knowledge of the structure of the target transducer.
Section 5.7 presents our Structured Onward Subsequential Function Inference Algo-
rithm (SOSFIA). Section 5.8 proves that this set-driven algorithm identifies the target
subclasses in the sense of our strong formulation of the paradigm of de la Higuera
[1997]. Section 5.9 presents several demonstrations of the SOSFIA using linguistically-
motivated examples. Section 5.10 concludes.

5.2 Preliminaries

We use throughout this chapter the same definitions and notations than in the previous
chapters, to which we add the following ones.

126 Chapter 5. On Learning with a Known Domain

Given three strings w, u and v such that w = uv, we write u−1 ·w = v iff w = uv and
w · v−1 = u. It trivially occurs that λ−1 ·w = w = w ·λ−1 and uu−1 ·w = w = w · v−1v.

The prefixes of w are pref(w) = {u ∈ Σ∗ | (∃v)[uv = w]}. We extend the notion of
prefixes to sets with pref(S) = ∪w∈Spref(w). The shared prefixes of S are the prefixes
shared by all strings in S: sh_pref(S) = ∩w∈Spref(w). The longest common prefix
(lcp) of S is then lcp(S) = w ∈ sh_pref(S) such that ∀v ∈ sh_pref(S) : |v| ≤ |w|.
We set the longest common prefix of an empty set to be λ.

Given an input alphabet Σ and an output alphabet ∆, a relation from Σ to ∆ is a
subset of Σ∗×∆∗. Given a relation R, we use dom(R) to refer to its left projection and
image(R) its right projection. So dom(R) = {w | (∃v)[(w, v) ∈ R} and image(R) = {v |
(∃w)[(w, v) ∈ R}. If, for all w ∈ Σ∗, v, v′ ∈ ∆∗, (w, v), (w, v′) ∈ R ⇒ v = v′ then R is
a function, and we write R(w) = v instead of (w, v) ∈ R. We also write R : Σ∗ → ∆∗

instead of R ⊆ Σ∗ × ∆∗. A function f is total iff for all w ∈ Σ∗ there exists v ∈ ∆∗

such that f(w) = v. A function that is not total is partial.
For any function t : Σ∗ → ∆∗ and w ∈ Σ∗, we define the tails of w with respect to

t as

tailst(w) =
{

(x, v) | wx ∈ dom(t) and t(wx) = uv and u = lcp(t(wΣ∗))
}
.

Two strings w,w′ ∈ Σ∗ are tail-equivalent with respect to t iff tailst(w) =

tailst(w
′), in which case we write w ∼t w′. Clearly, ∼t is an equivalence relation

which partitions Σ∗.

Definition 5.1. A function f is subsequential iff ∼f partitions Σ∗ into finitely many
blocks.

5.3 Representations of Subsequential Functions

5.3.1 Traditional Subsequential Transducers

We give here the usual definition of subsequential transducer:

Definition 5.2. A subsequential finite-state transducer (SFST) is a 6-tuple
〈Q, q0,Σ,∆, δ, ρ〉 where Q is a finite set of states, q0 ∈ Q is the initial state, Σ and
∆ are finite alphabets of symbols,1 δ ⊆ Q × Σ × ∆∗ × Q is the transition function,
ρ : Q×∆∗ is the output function, and the following holds: if (q, σ, w, r), (q, σ, v, s) ∈ δ
then (r = s) ∧ (w = v), i.e. the transition function is deterministic.

The transition and output functions of a SFST may be partial. We extend recur-
sively the transition function to δ∗ in the usual way: (q, λ, λ, q) ∈ δ∗; if (q, u, v, q′) ∈ δ∗
and (q′, σ, w, q′′) ∈ δ then (q, uσ, vw, q′′) ∈ δ∗.

1Notice that Σ can be equal to ∆: in this case we only specify one alphabet in the definition of a
SFST.

5.3. Representations of Subsequential Functions 127

The relation described by a SFST T is R(T) = {(w, vv′) | (∃q)[(q0, w, v, q) ∈ δ∗ ∧
ρ(q) = v′]}. However, since they are deterministic, SFSTs only describe functions: for
every SFST, each element of Σ∗ corresponds to at most one element of ∆∗. Therefore we
write T (w) = v instead of (w, v) ∈ R(T). We note that SFSTs compute total functions
iff ∀q ∈ Q,∀σ ∈ Σ, there exists q′ ∈ Q, v ∈ ∆∗ such that (q, σ, v, q′) ∈ δ and ρ(q′) is
defined. The size of a SFST T = 〈Q, q0,Σ,∆, δ, ρ〉 is |T | = |Q|+ |δ|+

∑
(q,σ,u,q′)∈δ |u|.

The following is a well-known result about subsequential functions:

Theorem 5.1 (Oncina and Garcia, 1991). A function f is subsequential iff there exists
a SFST T such that R(T) = f .

This result can be seen as the functional analogue to the Myhill-Nerode theorem
for regular languages. Recall that for any language L, the tails of a word w w.r.t. L is
defined as tailsL(w) = {u | wu ∈ L}. These tails (often called residuals in this context
and sometime written w−1L) can be used to partition Σ∗ into a finite set of equivalence
classes iff L is regular. These equivalence classes are the basis for constructing the
(unique up to isomorphism) smallest deterministic acceptor for a regular language.
Likewise, Oncina and Garcia’s proof of Theorem 5.1 shows how to construct the (unique
up to isomorphism) smallest SFST for any subsequential function.

5.3.2 Delimited Subsequential Transducers

Here we present an alternative representation of subsequential functions, which we call
delimited subsequential transducers and which are a slight variant of traditional SFSTs.

Definition 5.3. A delimited subsequential finite-state transducer (DSFST) is a 6-tuple
〈Q, q0, qf ,Σ,∆, δ〉 where Q is a finite set of states, q0 ∈ Q is the initial state, qf ∈ Q is
the final state, Σ and ∆ are finite alphabets of symbols, δ ⊆ Q×Σ ∪ {o,n} ×∆∗ ×Q
is the transition function (where o 6∈ Σ is a special symbol indicating the ‘start of
the input’ and n 6∈ Σ is a special symbol indicating the ‘end of the input’), and the
following hold:

1. if (q, σ, u, q′) ∈ δ with σ ∈ Σ then q 6= qf and q′ 6= q0,
2. if (q,n, u, q′) ∈ δ then q′ = qf and q 6= q0,
3. if (q0, σ, u, q

′) ∈ δ then σ = o and if (q,o, u, q′) ∈ δ then q = q0,
4. if (q, σ, w, r), (q, σ, v, s) ∈ δ then (r = s) ∧ (w = v).

In words, in DSFSTs, the unique initial state q0 has no incoming transitions (1) and
exactly one outgoing transition for input o (3) which leads to a non-final state (2), and
the unique final state qf has no outgoing transitions (1) and every incoming transition
comes from a non-initial state and has input n (2). DSFSTs are also deterministic on
the input (4).

128 Chapter 5. On Learning with a Known Domain

In addition, the transition function may be partial. We extend the transition func-
tion to δ∗ recursively again in the usual way: δ∗ is the smallest set containing δ and
which is closed under the following condition: if (q, w, u, q′) ∈ δ∗ and (q′, σ, v, q′′) ∈ δ
then (q, wσ, uv, q′′) ∈ δ∗. Note no elements of the form (q, λ, λ, q′) are elements of δ∗.

The size of a DSFST T = 〈Q, q0, qf ,Σ,∆, δ〉 is |T | = |Q|+ |δ|+
∑

(q,σ,u,q′)∈δ |u|.
The difference between DSFSTs and SFSTs is that the delimiters o,n are employed

to mark the beginnings and ends of input strings when computing the transducer func-
tion. Oncina et al. [1993] observe that an ‘end of the input’ delimiter can be used in
place of the output function ρ without changing the class of functions being described.
Therefore, the only real difference introduced here is the use of the ‘start of the input’
delimiter. It is trivially true that the class of functions describable with DSFSTs is ex-
actly the class representable by SFSTs (i.e., the subsequential functions) If a DSFST is
such that (q,n, v, qf) ∈ δ ⇒ v = λ then the function it represents is called sequential.2

From now on, we use the term ‘transducer’ to refer only to DSFSTs.
Furthermore, the proof of Theorem 5.1 shows that the tail-equivalence classes are

the basis for constructing the (unique up to isomorphism) smallest SFST for a regular
language. This result can be adapted to DSFSTs in a straightforward way to construct
the smallest DSFST recognizing a subsequential function f . We refer to this DSFST
as the canonical DSFST for f and denote it TC(f). (If f is understood from context,
we may write TC .) States of TC(f) which are neither initial nor final are in one-to-
one correspondence with tailsf (x) for all x ∈ Σ∗ [Oncina and García, 1991]. To
construct TC(f) we first let, for all x ∈ Σ∗ and σ ∈ Σ, the contribution of σ w.r.t. x be
contf (σ, x) = lcp(f(xΣ∗)−1 · lcp(f(xσΣ∗)). Then,

• Q = {tailsf (x) | x ∈ Σ∗} ∪ {q0, qf},
•
(
q0,o, lcp(f(Σ∗)), tailsf (λ)

)
∈ δ

• ∀x ∈ Σ∗,
(
tailsf (x),n, lcp(f(xΣ∗))−1 · f(x), qf

)
∈ δ iff x ∈ dom(f)

• ∀x ∈ Σ∗, σ ∈ Σ, if ∃y ∈ Σ∗ with xσy ∈ dom(f) then
(
tailsf (x),

σ, contf (σ, x), tailsf (xσ)
)
∈ δ.

• Nothing else is in δ.

Observe that unlike the traditional construction, the initial state q0 is not tailsf (λ).
The single outgoing transition from q0, however, goes to this state with the input o.
Canonical DSFSTs have an important property called onwardness (detailed in Sec-
tion 5.3.3).

We end this section with the following definitions:

Definition 5.4 (Trimmed Transducers). A state q in a DSFST τ is reachable iff there
exists w ∈ Σ∗, v ∈ ∆∗ such that (q0,ow, v, q) ∈ δ∗. A state q in a DSFST τ is useful

2Sakarovitch [2009] inverts these terms and uses ‘sequential’ to mean our ‘subsequential’ and ‘sub-
sequential’ to mean our ‘sequential.’

5.3. Representations of Subsequential Functions 129

iff there exists w ∈ Σ∗, v ∈ ∆∗ such that (q, wn, v, qf) ∈ δ∗ and q is reachable. A
transducer is trimmed iff every states other than q0 and qf are useful.

Henceforth, the only DSFSTs we consider are trimmed.

5.3.3 Onward Transducers

An important concept for both SFSTs and DSFSTs that is also important to learning
subsequential functions is the property of onwardness, which we define here for DSFSTs.

Definition 5.5. A DSFST τ = 〈Q, q0, qf ,Σ,∆, δ〉 is onward iff for all (q, σ, u, r) ∈ δ,
q 6= q0, either ∃(q, σ′, v, s) in δ such that σ 6= σ′ and lcp(u, v) = λ, or u = λ.

An equivalent definition states that a DSFST τ is onward iff for every w ∈ Σ∗,
u ∈ ∆∗, (q0,ow, u, q) ∈ δ∗ ⇐⇒ u = lcp({f(wΣ∗)}).

Intuitively, a transducer is onward iff there is no delay in writing the output strings.
As the input symbols are consumed from left to right, the output is written the moment
it is determined. Onward SFSTs are discussed in detail by Oncina et al. [1993], as
onwardness plays a large role in the OSTIA learning algorithm. However, Definition 5.5
generalizes that notion of onward transducers to partial functions. For total functions,
the definitions are equivalent. In the next section we show that any DSFST can be
made onward without changing its structure or the function it represents.

Figures 5.1 and 5.2 (from Oncina and García [1991]) illustrate the differences be-
tween SFSTs and Onward SFSTs: these SFSTs represent the same function but Fig-
ure 5.1 is onward while Figure 5.2 is not (and cannot be made) onward. Figure 5.3 is
a DSFST and Figure 5.4 is an onward DSFST. They both represent the same function
shown in Figures 5.1 and 5.2.

Figure 5.1: Onward SFST Figure 5.2: SFST

Figure 5.3: A DSFST Figure 5.4: An onward DSFST

Readers are referred to Oncina and García [1991], Oncina et al. [1993], and Mohri
[1997a] for more on subsequential transducers, and Eisner [2003] for generalizations
regarding onwardness.

130 Chapter 5. On Learning with a Known Domain

5.4 Deriving an Onward DSFST

We prove the following theorem which says for any DSFST τ , there is an onward DSFT
with the exact same structure which recognizes the same function described by τ .

Theorem 5.2. For any trimmed DSFST τ = 〈Q, q0, qf ,Σ,∆, δ〉, there is an onward
trimmed DSFST τ ′ = 〈Q, q0, qf ,Σ,∆, δ′〉 such that R(τ) = R(τ ′) and (q, a, u, q′) ∈ δ iff
there exists u′ ∈ ∆∗ and (q, a, u′, q′) ∈ δ′.

The proof of the above theorem makes use of a function push_back which takes
as arguments a transducer τ and a state q of τ and returns a transducer τ ′ in which
the longest common prefix of the outputs of the transitions leaving q is pushed as a
suffix onto the outputs of the transitions entering q (if they exist). More formally,
for a trimmed DSFST, δ′ = δ if q = q0, else δ′ = {(q, σ, x−1 · ux, q) | (q, σ, u, q) ∈
δ}∪{(q, σ, x−1·u, q′) | (q, σ, u, q′) ∈ δ}∪{(q′, σ, ux, q) | (q′, σ, u, q) ∈ δ}∪δ\{(q1, σ, u, q2) |
q1 = q or q2 = q}, where x = lcp({u | (q, σ, u, q) ∈ δ}).

First we observe that pushing does not change the function described by a DSFST.

Lemma 5.3. Let τ = 〈Q, q0, qf ,Σ,∆, δ〉 be a trimmed DSFST. For all q ∈ Q, we have
R(τ) = R(push_back(τ, q)).

Proof. Let q ∈ Q and (v, w) ∈ R(τ). Then there exist σ1, . . . , σn in Σ such that
v = σ1 . . . σn, ∀i, 1 ≤ i ≤ n (qi, σi, ui, qi+1) ∈ δ, q1 = q0, qn+1 = qf , and w = u1 . . . u2.
Consider τ ′ = push_back(τ, q).

As the result trivially holds for q = q0, suppose q 6= q0 and let w′ = τ ′(v). Since
q 6= q0 and τ is trim, there is always at least one incoming transition into q and
hence a place for the lcp to be pushed back to. Since push_back only modifies the
output string of some transitions, it is the case that w′ = u′1 . . . u

′
n, with ∀i, 1 ≤ i ≤ n

(qi, σi, u
′
i, qi+1) ∈ δ′. Let x = lcp({u : (q, σ, u, q′) ∈ δ}) and i1, . . . , ik (k < n) the

indexes such that qij = q, for 1 ≤ j ≤ k. We have u′ij−1 = uij−1x and u′ij = x−1 · uij .
Thus w′ = u1 . . . (ui1−1x)(x−1 · ui1) . . . (uik−1x)(x−1 · uik) . . . un = w

Notice that this proof is not possible without the initial transition with the start
delimiter. In Figure 5.2, applying push_back to the state 1 modifies the represented
function: for instance, (λ, bc) is replaced in the relation by (λ, c).

Proof. (Theorem 5.2). Since τ is a DSFST, q0 has only one transition to one other
state. So we can always push back to this transition without creating non-onwardness.
We can cycle through the other states pushing back the lcp. The number of times
we have to push back is finite. This is because the number of times we might need
to push back from a state q is limited by the length of the output function of state q.
Therefore, pushing will lead to an onward DSFST without, by Lemma 5.3, changing
the language.

5.5. Learning Paradigm 131

The DSFST of Figure 5.3 corresponds to the SFST of Figure 5.2 after applying
push_back once to state 1, and the DSFST of Figure 5.4 shows the onward result of
recursively applying push_back according to the proof of Theorem 5.2.

In the rest of the chapter, we are only considering onward, trimmed, delimited
transducers.

5.5 Learning Paradigm

The capability of the algorithm detailed in Section 5.8 is demonstrated in paradigm
of identification in polynomial time and data [de la Higuera, 1997], studied in Chap-
ter 2. We discussed the limitations of this IPTD paradigm there. However, since the
structures considered here are of regular type, non of the drawbacks we described are
of consideration in the present context.

We have to extend Definition 2.8 for set-driven algorithms that aim at learning
functions. We first need to define the following notion:

Definition 5.6. Let T be a class of functions represented by some class R of represen-
tations.

1. A sample S for a function t ∈ T is a finite set of data consistent with t, that is to
say (w, v) ∈ S iff t(w) = v. The size of a sample S is the sum of the length of the
strings it is composed of: |S| =

∑
(w,v)∈S |w|+ |v|.

2. A (T,R)-learning algorithm A is a program that takes as input a sample for a
function t ∈ T (possibly together with additional prior knowledge) and outputs a
representation from R.

The paradigm relies on the notion of characteristic sample, straightforwardly adapted
here for functions:

Definition 5.7 (Characteristic sample). Given a (T,R)-learning algorithm A, we say
that a sample CS is a characteristic sample of a transduction t ∈ T if for all samples
S such that CS ⊆ S, A returns a representation r such that r(w) = t(w), for all
w ∈ dom(t).

This definition is the one used in the proof of the OSTIA algorithm. We are actually
using a strongest version:

Definition 5.8 (Strong characteristic sample). Given a (T,R)-learning algorithm A,
we say that a sample CS is a strong characteristic sample of a transducer τ ∈ R if for
all samples S such that CS ⊆ S, A returns a representation r such that r = t.

The learning paradigm can now be defined as follows.

132 Chapter 5. On Learning with a Known Domain

Definition 5.9 (Strong identification in polynomial time and data). A class T of func-
tions is strongly identifiable in polynomial time and data (SIPTD) if and only if there
exist a (T,R)-learning algorithm A and two polynomials p() and q() such that:

1. Given a sample S of size m for t ∈ R, A returns a hypothesis r ∈ R in O(p(m))

time.
2. For each representation t ∈ R of size k, there exists a strong characteristic sample

of L of size at most O(q(k)).

For a discussion about (weak and) strong identification, the reader is referred to the
work of Clark [2014]. Section 5.8 shows how out SOSFIA meets these criteria.

5.6 Target Classes

Empty transducers provide the a priori structural information that will allow learn-
ing of the function. An empty DSFST (henceforth ‘empty transducer’) is a DSFST
whose transition outputs are all blanks (�). An empty transducer τE defines a class
of functions T which is exactly the set of functions which can be created by taking the
states and transitions of τE and replacing the blanks with output strings, maintaining
onwardness.

Definition 5.10. An empty transducer τE is a DSFST 〈Q, q0, qf ,Σ, {�}, δ〉 such that
for all (q, a, u, q′) ∈ δ, u = �.

Definition 5.11. The class of functions TτE described by an empty DSFST τE =

〈Q, q0, qf ,Σ, {�}, δ〉 is:
TτE =

{
t | ∃τ = 〈Q, q0, qf ,Σ,∆, δτ 〉 s.t. ∀(q, σ, v, r) ∈ δτ , (q, σ,�, r) ∈ δ

and ∀(q, σ,�, r) ∈ δ, ∃v ∈ ∆∗ : (q, σ, v, r) ∈ δτ ;

t(τ) and onward(τ)
}

Lemma 5.4. For all τE , all t ∈ TτE are subsequential functions.

Proof. From Definitions 5.2, 5.10, and 5.11.

We observe there are infinitely many DSFSTs and therefore infinitely many such
classes. Also, for each τE , each class TτE contains infinitely many functions since there
is no upper bound on the length of output strings.

5.7 Learning Algorithm

Given a class of functions TτE , a target function t ∈ TτE , and a sample S of t, the Struc-
tured Onward Subsequential Function Inference Algorithm (SOSFIA) iterates through

5.7. Learning Algorithm 133

the states of τE . At each state, it sets the output of each outgoing transition to be the
minimal change in the output generated by this transition, according to S. To calculate
this, we first define the common output of an input prefix w.

Definition 5.12. The common output of an input prefix w in a sample S ⊂ Σ∗ ×∆∗

is the lcp of all t(wv) that are in S: CommonOutS(w) = lcp({u ∈ Σ∗ | ∃v s.t. (wv, u) ∈
S})

The minimal change in the output is then simply the difference between the common
outputs of w and wσ.

Definition 5.13. The minimal change in the output in S ⊂ Σ∗ ×∆∗ from w to wσ is:

Min_ChangeS(σ,w) =

{
CommonOutS(σ) if w = λ

CommonOutS(w)−1CommonOutS(wσ) otherwise

This gives us exactly the output needed to maintain onwardness, which will in turn
guarantee that the SOSFIA converges to the correct function, provided that the sample
contains enough information. Note that the minimal change is calculable for S because
it is finite. The algorithm is presented below.

Algorithm 1 Structured Onward Subsequential Function Inference Algorithm (SOS-
FIA)
Data: A sample S ⊂ oΣ∗ n×∆∗, an empty DSFST τE = 〈Q, q0, qf ,Σ, {�}, δ〉
Result: τE as a DSFST with filled transitions
F ← empty_Queue
Push(F, (q0, λ))
mark(q0)
while F is not empty do

(q, w)← Shift_First(F)

for σ ∈ Σ ∪ {o,n} in lexicographic order do
for δi = (q, σ,�, q′) ∈ δ do

if there exists σ′ 6= σ such that (q, σ′, u, q′′) ∈ δ then
Change δi to (q, σ, v, r), where v = Min_ChangeS(w, σ)

else
Change δi to (q, σ, λ, r)

if q′ is not marked then
Push(F, (q′, wσ))
mark(q′)

return τE ;

The SOSFIA does a breadth-first parsing of the empty DSFST, storing in the queue
F (a First-In/First-Out data type) seen but untreated states together with the smallest

134 Chapter 5. On Learning with a Known Domain

prefix that leads to each of these states: this is ensured by the lexicographic order in
which the letters are considered and by the fact that only unmarked states (i.e., states
that have not been discovered so far) are pushed into F . When a state is treated, all
its outgoing transitions are considered. The output of this transition is set to be the
result of the Min_Change function on the shortest prefix arriving at this state and the
input letter of the transition, unless it is the only transition leaving this state in which
case the output is set to be λ3.

5.8 Learning Result

Let τ = 〈Q, q0, qf ,Σ, δ〉 be a DSFST. We define MinPref(q) = min{w ∈ oΣ∗n :

(q0, w, u, q) ∈ δ∗}.

Lemma 5.5 (Characteristic Sample). Let τ∗ = 〈Q, q0, qf ,Σ, δ∗〉 be the target DSFST.
We define requirements on a sample CS as followed:

• For all (q, σ, u, q′) ∈ δ∗, q 6= q0, there exists (vσv′, w) in CS, with v =

MinPref(q),
• For all q ∈ Q for which at least two outgoing transitions exist, for all (q, σ, s, q′) ∈
δ∗, if there exists q1, . . . , qn ∈ Q such that

1. q′ = q1, and
2. ∀i < n, qi has only one outgoing transition and (qi, σi, λ, qi+1) ∈ δ∗, and
3. (qn−1, σn, s, p) ∈ δ, and
4. there exists σ′ 6= σn such that (qn−1, σ

′, s′, p′) ∈ δ∗ and lcp(s, s′) = λ

then there exists (vσσ1 . . . σnw, z) and (vσσ1 . . . σn−1σ
′w′, z′) in CS, with both

being an element of the target function and v = MinPref(q).

Any sample fulfilling these requirements is a characteristic sample for the SOSFIA
algorithm.

Notice that the third and fourth items are possible only for onward transducers.

Proof. (Sketch) Suppose that a sample CS fulfilling the requirements of Theorem 5.5 is
contained in S. Let τA = 〈Q, q0, qf ,Σ, δA〉 be the transducer returned by the algorithm
on S. Let (q, σ, s, q′) ∈ δ∗ and v = MinPref(q).

If there is no other outgoing transition from q, then s = λ as τA is onward. By the
definition of the algorithm, (q, σ, λ, q′) ∈ δA.

3Readers may wonder whether the entire if/then/else statement can be replaced with only the part
between then and else (so changing δi to (q, σ, v, r)). We believe this is the case and while it makes for
a more aesthetically pleasing algorithm, it significantly complicates the identification proof; hence the
current presentation of the algorithm.

5.8. Learning Result 135

Suppose now that there exist several transitions from the state q. By construction
of the sample (first item), there exists (vσv′, u) in S. Therefore, by the definition of the
learning algorithm: (q, σ, Min_ChangeS(v, σ), q′) ∈ δA.

Suppose q 6= q0. As q admits several outgoing transitions, there exists (q, σ1, s1, q1)

and (q, σ2, s2, q2) in δ∗ such that lcp(s1, s2) = λ. By construction of the sample,
∃v1, v2, u1, u2 such that (vσ1v1, u1) and (vσ2v2, u2) are in the sample. We then have
lcp(u1, u2) = x and therefore CommonOutS(v) = x.

By the definition of a function, xs ∈ pref(CommonOutS(vσ)). If q′ = qf then
(vσ, xs) is in S as there is no outgoing transition from the final state. Therefore xs =

CommonOutS(vσ)) and then Min_Change(v, σ) = s.
Suppose now that q 6= qf . By construction, there exists (vσσ1 . . . σnw, u) and

(vσ1 . . . σn−1σ
′w′, u′) in the sample. We have (q′, σ1 . . . σn−1, λ, q

′′) ∈ δ∗∗ , therefore
u = xss1v1 and u′ = xss2v2, where (q′′, σn, s1, p) ∈ δ∗ and (q′′, σ′, s2, p

′) ∈ δ∗ and
lcp(s1, s2) = λ. Therefore xs = CommonOutS(vσ) and then Min_Change(v, σ) = s.

The proof for the case q = q0 is of similar nature.

Time Complexity. The while loop is executed exactly |Q| times since every state is
considered once and only once. Then the two for loops are executed overall |Σ| ·card(δ)

times since each transition is modified only once (card(δ) is the cardinality of δ). In the
worst case, the algorithm launches Min_Change for each transition, which corresponds
to the computation of two lcp. Each of these calculations is doable in O(n ·m) with an
adapted structure for storing strings (e.g., prefix tree acceptor), where m is the length
of the longest string in the right projection of the sample, and n is the number of strings
in the left projection of the sample. The overall time complexity of the algorithm is
thus in O(n ·m) since |Q| and card(δ) are fixed.

Data Complexity. The size of the characteristic sample defined in Lemma 5.5 for a
target DSFST τ = 〈Q, q0, qf ,Σ,∆, δ〉 is in O(|τ |2).

Indeed, one needs at most |Q| elements to fulfill the first requirement. Each of these
string pairs can have a left projection of length at most |Q| and a right projection of
length at most

∑
(q,σ,u,q′)∈δ |u|. This is due to the fact that in the worst case these

elements correspond to a parsing through all states and all transitions of τ (in case τ
admits cycles, longest elements can be considered, but we focus only on the smallest
ones in this proof). Therefore the size of this part of the characteristic sample is in
O(|Q| · (|Q|+ |τ |)) = O(|Q| · |τ |) = O(|τ |2).

The number of elements needed for a sample to fulfill the second item of the def-
inition is at most 2 · card(δ). For the same reason as previously, these elements can
have a left projection of length at most |Q| and a right projection of length at most∑

(q,σ,u,q′)∈δ |u|. The size of this second part of the characteristic sample is thus in
O(card(δ) · |τ |) = O(|τ |2).

136 Chapter 5. On Learning with a Known Domain

Theorem 5.6. SOSFIA strongly identifies in polynomial time and data any class of
functions definable by a given empty transducer.

Proof. Immediate from the previous complexity results.

5.9 Demonstrations

The applicability of subsequential transducers to natural language phonology and mor-
phology is discussed in detail in [Mohri, 1997b, Beesley and Karttunen, 2003]. Briefly,
morphological operations can be thought of as a transformation from a bare form to
an affixed form, and a foundational principle of modern generative phonology is that
there is a phonological mapping from abstract, lexical ‘underlying’ representations of
words and morphemes to their concrete surface pronunciations [Hayes, 2011]. In this
section we present several demonstrations of the SOSFIA using linguistically-motivated
examples.

5.9.1 Input Strictly Local Functions

As mentioned above, Chandlee [2014] shows that the input-output mapping of many
phonological processes can be modeled with Input Strictly Local (ISL) functions. The
automata-theoretic characterization of these functions provides sufficient structure for
the SOSFIA to identify them in the limit. We tested the learner on three example
ISL functions, all of which can be thought of as phonological ‘repairs’ that prevent the
underlying sequence Dn from surfacing. The examples are summarized in (1).

(1)

Process Rule
Final devoicing D → T / n
Deletion D → ∅ / n
Epenthesis ∅ → V / D n

These notations are very common in computational linguistic but they might require
some explanations here: the first line means that a D is replaced by a T if it is at the
end of a sequence; the second states that a D is erased if it happens at the end of a
sequence; the last implies that a V is created after a final D.

Using the alphabet Σ = {D, T, N, V}, where D is a voiced obstruent, T is a voice-
less obstruent, N is a sonorant consonant, and V is a vowel, we constructed a data
set of 1365 string pairs. The left projection of the data set is Σ≤5; each string in
the left projection was paired with an output string according to the target function.
The same empty FST was used in all three test cases, as the FST for each rule only
differs in terms of the output strings. The output of the SOSFIA is correct in all
three cases; as an example, the resulting machine for the final devoicing test case is

5.9. Demonstrations 137

given in Figure 5.5. The machines for the deletion and epenthesis cases were identi-
cal, except for that in the deletion case the transition from state 2 to state 6 has an
output of λ, and in the epenthesis case the transitions out of state 2 are as follows:
(2, D,D, 2), (2, T, T, 3), (2, V, V, 5), (2, N,N, 4), (2,n, V, 6).

1 3T:T

2D:λ

5

V:V

4

N:N

6

⋉:λ

0
⋊:λ

T:T

D:λ

V:V

N:N

⋉:λ

T:DT

D:D

V:DV

N:DN

⋉:T

T:T

D:λ

V:V

N:N

⋉:λ

T:T

D:λ

V:V

N:N

⋉:λ

Figure 5.5: Final devoicing test case

1

t:t
a:a

3

S:S

2s:s 4

⋉:!

0
⋊:!

a:a

S:S
t:t

s:S

⋉:!

S:s

t:t

s:s
a:a

⋉:!

Figure 5.6: Sibilant harmony test case

5.9.2 Non-ISL Phonological Processes

There also exist phonological processes that cannot be modeled with ISL functions.
These are ‘long-distance’ processes such as the sibilant harmony process attested in
Samala. In this language, all sibiliant sounds (i.e., {s, S}) in a word must be the same
as the rightmost one [Applegate, 1972, Hansson, 2010]. An example is shown in (2).

(2) /hasxintilawaS/ 7→ [haSxintilawaS] ‘his former gentile name’

Using the (simplified) alphabet Σ = {s, S, t, a}, we constructed a dataset of string pairs
in which the left projection is Σ≤4. Each of these strings was paired with one in which
all sibiliants (if any) assimilate to the rightmost one. As shown in Figure 5.6, the output
of the SOSFIA correctly models this process.

Two things should be noted about this test case. One is that this process is right
subsequential, which means the input and output strings must be reversed to get the
correct mapping. Two, the empty FST given to the learner includes separate states
for words in which ‘s’ is the rightmost sibiliant and words in which ‘S’ is the rightmost
sibilant (i.e., the a priori knowledge given to the learner identifies the set of segments
involved in the process). This is akin to phonological theories in which certain classes
of segments (here the sibilants) are represented on distinct tiers (e.g., vowel harmony;

138 Chapter 5. On Learning with a Known Domain

[Clements, 1976]).

5.9.3 Morphological Parsing

The learner was also tested on a morphology-to-phonology function, as discussed in
[Beesley and Karttunen, 2003], in which meanings of morphemes are mapped to their
pronunciation. The data were from Swahili [Hayes, 2011] verbs, which show a series
of prefixes indicating person, number, and tense. The following example shows the
morphological breakdown of nimenipenda ‘I have liked myself’:4

(3) ni + me + ni + penda ‘I have liked myself’
1st-acc perf 1st-nom like

The learner was given an empty transducer representing the possible morpheme orders
and 90 pairs of the shape <morpheme string, phoneme string>, as exemplified in (4).

(4) 1st-nom+perf+1st-acc+like , nimenipenda
3rd-nom+pres+1st-acc+like , ananipenda
2nd-nom+perf+1st-pl-acc+beat , umetupiga

The learner correctly learned the morphological function; i.e., for any transition on
‘1st-nom’ it learned that the output should be ‘ni’.

5.10 Conclusion

This chapter contains two main contributions. First, we introduced DSFSTs and showed
that, unlike SFSTs, they can be made onward without modifying their structure. Sec-
ond, we introduced a learning algorithm for proper subclasses of subsequential functions
in which all member functions share a SFST structure. There are infinitely many such
classes, each with infinitely many member functions. While the learner is given a signif-
icant amount of prior knowledge in the form of the empty transducer representing the
class of functions, this allows for extremely efficient learning measured in both time and
data. We have also shown specific applications for the learner in the linguistic domains
of phonology and morphology.

The algorithm presented in this chapter returns a function even given incomplete
data. With a sacrifice in added time complexity linear to the sum of the length of the
left projection of the sample, the algorithm can be modified so that it checks if any
element of the sample uses a transition it is about to modify. If it is not the case it
can stop since it is sure that the data is not sufficient for learning. We have opted not

4Abbreviations: 1st-acc = first person accusative (‘me’); 1st-nom = first person nominative (‘I’);
1st-pl-acc = first person plural accusative (‘us’); 2nd-nom = second person nominative (‘we’); 3rd-nom
= third person nominative (‘he’); pres = present tense; perf = perfect tense.

Bibliography 139

to include this functionality, as this is not enough to guarantee that there is sufficient
data to calculate the correct output for the transition (as it is still unknown whether
all the input/output pairs necessary to calculate the correct output for that transition
are in the data).

Bibliography

D. Angluin. Inference of reversible languages. J. ACM, 29(3):741–765, July 1982. 125

R. Applegate. Inseño Chumash grammar. PhD thesis, University of California, Berkeley,
1972. 137

K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI Publications, 2003.
136, 138

J. Chandlee. Strictly Local Phonological Processes. PhD thesis, University of Delaware,
2014. 125, 136

A. Clark. Inference of inversion transduction grammars. In Proc. of the International
Conference on Machine Learning, pages 201–208, 2011. 124

A. Clark. Learning trees from strings: A strong learning algorithm for some context-free
grammars. Journal of Machine Learning Research, 14:3537–3559, 2014. 132

G. N. Clements. Vowel harmony in nonlinear generative phonology: an autosegmental
model. Indiana University Linguistics Club, 1976. 138

C de la Higuera. Characteristic sets for polynomial grammatical inference. Machine
Learning Journal, 27:125–138, 1997. 125, 131

C. de la Higuera. Grammatical Inference: Learning Automata and Grammars. Cam-
bridge University Press, 2010. 124

J. Eisner. Simpler and more general minimization for weighted finite-state automata.
In Proc. of the Joint Meeting of the Human Language Technology Conference and
the North American Chapter of the Association for Computational Linguistics, pages
64–71, 2003. 129

E. Filiot and P.-A. Reynier. Transducers, logic and algebra for functions of finite words.
ACM SIGLOG News, 3(3):4–19, 2016. 124

P. Garcia, E. Vidal, and J. Oncina. Learning locally testable languages in the strict
sense. In Proc. of the Workshop on Algorithmic Learning Theory, pages 325–338,
1990. 125

140 Bibliography

G. Ó. Hansson. Consonant harmony: long-distance interaction in phonology. Berkeley,
CA: University of California Press, 2010. 137

B. Hayes. Introductory Phonology. John Wiley & Sons, 2011. 136, 138

J. Heinz and J. Rogers. Learning subregular classes of languages with factored deter-
ministic automata. In A. Kornai and M. Kuhlmann, editors, Proc. of the Meeting on
the Mathematics of Language (MoL 13), pages 64–71. Association for Computational
Linguistics, 2013. 125

A. Jardine, J. Chandlee, R. Eyraud, and J. Heinz. Very efficient learning of structured
classes of subsequential functions from positive data. In A. Clark, M. Kanazawa,
and R. Yoshinaka, editors, Proc. of the International Conference on Grammatical
Inference, volume 34 of PMLR, pages 94–108, 2014. 124

R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, 1971. 125

M. Mohri. Finite-state transducers in language and speech processing. Computational
Linguistics, 23(2):269–311, 1997a. 129

M. Mohri. Finite-state transducers in language and speech processing. Computational
Linguistics, 23(2):269–311, 1997b. 136

M. Mohri, F. Pereira, and M. Riley. Weighted finite-state transducers in speech recog-
nition. Computer Speech & Language, 16(1):69 – 88, 2002. 124

J. Oncina and P. García. Inductive learning of subsequential functions. Technical
Report DSIC II-34, Univ. Politécnia de Valencia, 1991. 128, 129

J. Oncina, P. García, and Enrique Vidal. Learning subsequential transducers for pattern
recognition tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15:448–458, May 1993. 124, 128, 129

Jaques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
Translated by Reuben Thomas from the 2003 edition published by Vuibert, Paris.
128

M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner. Symbolic finite state
transducers: Algorithms and applications. SIGPLAN Not., 47(1):137–150, 2012. 124

Chapter 6

On Learning with Locality
Constraints

Contents
6.1 Introduction . 142
6.2 Preliminaries . 143
6.3 Input and Output Strictly Local functions 144

6.3.1 Input Strictly Local functions . 145
6.3.2 Output Strictly Local functions . 146

6.4 Input-Output Strictly Local functions 148
6.4.1 Definition . 148
6.4.2 Automata Characterization . 148
6.4.3 Relations among classes . 150

6.5 Learning IOSL functions . 152
6.5.1 The Learning Algorithm . 152
6.5.2 Theoretical Results . 152

6.6 Conclusion and future works . 157
Bibliography . 158

Context of this work

This chapter presents the main results obtained during the on-going collaboration with
Jeffrey Heinz and Jane Chandlee. In her PhD dissertation of 2014, Jane introduced two
classes of transductions with phonological motivations. We then focused on learning
these classes, which implied the redefinition of one of them and required a characteri-
zation in terms of finite state models for both of them. Learning algorithms have been
designed and successfully studied, and an encompassing class of transductions has been
defined and studied.

The work on the two first classes has been published in the Transaction of the
Association for Computational Linguistics [Chandlee et al., 2014] and in the proceedings

142 Chapter 6. On Learning with Locality Constraints

of the conference on Mathematics of Language [Chandlee et al., 2015]. The work on the
more general class has not been published yet.

6.1 Introduction

A foundational principle of modern generative phonology is that systematic variation
in morpheme pronunciation is best explained with a single underlying representation
of the morpheme that is transformed into various surface representations based on
context [Kenstowicz and Kisseberth, 1979, Odden, 2014]. Thus, much of generative
phonology is concerned with the nature of these transformations, more than just the
surface language: this is our main motivation to introduce and study new classes of
transductions.

Indeed, one way to better understand the nature of linguistic phenomena is to
develop strong computational characterizations of them. Discussing SPE-style phono-
logical rewrite rules [Chomsky and Halle, 1968], Johnson [1972, p. 43] expresses the
reasoning behind this approach:

It is a well-established principle that any mapping whatever that can be
computed by a finitely statable, well-defined procedure can be effected by
a rewriting system (in particular, by a Turing machine, which is a special
kind of rewriting system). Hence any theory which allows phonological rules
to simulate arbitrary rewriting systems is seriously defective, for it asserts
next to nothing about the sorts of mappings these rules can perform.

This leads to the important question of what kinds of transformations ought a theory
of phonology allow?

Earlier work suggests that phonological theories ought to exclude non-regular re-
lations [Johnson, 1972, Kaplan and Kay, 1994, Frank and Satta, 1998, Graf, 2010].
More recently, it has been hypothesized that phonological theory ought to only allow
certain subclasses of the regular relations [Gainor et al., 2012, Chandlee et al., 2012,
Chandlee and Heinz, 2012, Payne, 2017, Luo, 2014, Heinz and Lai, 2013]. This re-
search places particular emphasis on subsequential functions, which can informally be
characterized as functions definable with a weighted, deterministic finite-state acceptor
where the weights are strings and multiplication is concatenation. The aforementioned
work suggests that this hypothesis enjoys strong support in segmental phonology, with
interesting and important exceptions in the domain of tone [Jardine, 2016].

Recent research has also showed an increased awareness and understanding of sub-
regular classes of formal languages and their importance for theories of phonotactics,
that is, the study of the surface form [Heinz, 2007, 2009, 2010, Rogers et al., 2010,
Rogers and Pullum, 2011, Rogers et al., 2013]. While many of these classes and their
properties were studied much earlier [McNaughton and Papert, 1971, Thomas, 1997],

6.2. Preliminaries 143

little to no attention has been paid to similar classes properly contained within the
subsequential functions. Thus, at least within the domain of segmental phonology,
there is an important question of whether stronger computational characterizations of
phonological transformations are possible, as seems to be the case for phonotactics.

Additionally, an important thread in much of the aforementioned research was that
the stronger computational characterizations of phonological phenomena can help ad-
dress the learning problem. Theoretical learning results have existed for many years for
Strictly Local (SL) languages [Garcia et al., 1990], total subsequential functions [Oncina
et al., 1993], and many other classes (see for instance the work of García and Ruiz
[2004]). Recent work generalizes some of these results [Heinz et al., 2012] and devel-
ops variants that apply generally to a wide range of subclasses at the cost of some
expressibility [Heinz and Rogers, 2013, Jardine et al., 2014].

In this chapter, we focus on defining, studying, and learning subclasses of reg-
ular transduction based on the properties of well-studied Strictly Local formal lan-
guages [McNaughton and Papert, 1971, Rogers and Pullum, 2011, Rogers et al., 2013].
These are languages that can be defined with grammars of substrings of length k (called
k-factors), such that a string is in the language only if its own k-factors are a subset of
the grammar.

It has been shown that these languages can model natural language phonotactic
constraints which pick out contiguous substrings bounded by some length k [Heinz,
2007, 2010].

To extend this work to phonological transformations, we detail here three classes
of transductions, namely the Input Strictly Local functions (ISL), the Output Strictly
Local functions (OSL), and their generalization: the Input Output Strictly Local func-
tions (IOSL). They correspond to three different ways to generalize to functions the SL
languages.

Section 6.2 provides the needed definitions and preliminary remarks. ISL and OSL
functions are introduced in Section 6.3 together with the main results obtained for each
of them. Section 6.4 deals with the more general IOSL functions: formal definitions,
finite state characterization, and relations between classes are detailed. Section 6.5
contains the learning algorithm for IOSL functions and the proof that it identifies the
class in polynomial time and data while Section 6.6 concludes.

6.2 Preliminaries

We use throughout this chapter the same definitions and notations than in the previous
chapters, to which we add the following ones.

The set of all possible strings of length n or less over an alphabet Σ is denoted
Σ≤n. Similarly to the set of prefixes defined in Section 5.2, the set of suffixes of w is
suff(w) = {s ∈ Σ∗ | (∃p ∈ Σ∗)[w = ps]}. For all w ∈ Σ∗ and n ∈ N, suffn(w) is

144 Chapter 6. On Learning with Locality Constraints

the single suffix of w of length n if |w| ≥ n; otherwise suffn(w) = w. The reduction
expressed in the following remark will prove useful later:

Remark 6.1. For all w, v ∈ Σ∗, n ∈ N, suffn
(
suffn(w)v

)
= suffn(wv).

The transducers of consideration in this chapter are the Delimited Subsequential
Finite State Transducers introduced in Definition 5.3. As it is already the case in
Chapter 5, onwardness (see Definition 5.5) is an important and desired property for
transducers. The following technical lemma will be of crucial interest, for which we
need to define for each state q of a DSFST 〈Q, q0, qf ,Σ,∆, δ〉, the outputs of the edges
out of q: outputs(q) =

{
u | (∃σ ∈ Σ ∪ {o,n})(∃q′ ∈ Q)[(q, σ, u, q′) ∈ δ]

}
.

Lemma 6.2. If a DSFST T recognizes f and is onward then ∀q 6= q0 lcp(outputs(q)) =

λ and lcp(outputs(q0)) = lcp(f(Σ∗)).

Proof. By construction of a DSFST, only one transition leaves q0: (q0,o, u, q). This
implies (q0,oλ, u, q) ∈ δ∗ and as the transducer is onward we have lcp(outputs(q0)) =

lcp(u) = u = lcp(f(λΣ∗)) = lcp(f(Σ∗)). Now take q 6= q0 and w ∈ Σ∗ such
that (q0,ow, u, q) ∈ δ∗. Suppose lcp(outputs(q)) = v 6= λ. Then v is a prefix of
lcp({f(wσx) | σ ∈ Σ∪{n}, x ∈ Σ∗}) which implies uv is a prefix of lcp(f(wΣ∗)). But
v 6= λ, contradicting the fact that T is onward.

6.3 Input and Output Strictly Local functions

Before defining the more general Input-Output Strictly Local functions (in Section 6.4),
we first defined Input Strictly Local (ISL) functions and Output Strictly Local (OSL)
functions. ISL were originally introduced in Chandlee [2014] PhD dissertation and in a
paper by Chandlee et al. [2014], while OSL were proposed by Chandlee et al. [2015].

These classes (and the one of Section 6.4) generalize the Strictly Local languages to
functions based on a defining property of SL languages, the Suffix Substitution Closure
[Rogers and Pullum, 2011].

Theorem 6.3 (Suffix Substitution Closure). L is Strictly Local iff for all strings u1, v1,
u2, v2, there exists k ∈ N such that for any string x of length k−1, if u1xv1, u2xv2 ∈ L,
then u1xv2 ∈ L.

An important corollary of this theorem follows.

Corollary 6.4 (Suffix-defined Residuals). L is Strictly Local iff for all strings u1, u2,
there exists k ∈ N such that for any string x of length k − 1 it is the case that the
residuals (the language equivalent of tails) of u1, u2 with respect to L are the same;
formally, that {v | u1xv ∈ L} = {v | u2xv ∈ L}.

Input and Output Strictly Local functions are defined in the manner suggested by
the corollary.

6.3. Input and Output Strictly Local functions 145

6.3.1 Input Strictly Local functions

The definition of ISL functions is straightforward:

Definition 6.1 (Input Strictly Local Functions). A function f : Σ∗ → ∆∗ is Input
Strictly Local (ISL) if there is a k such that for all u1, u2 ∈ Σ∗, if suffk−1(u1) =

suffk−1(u2) then tailsf (u1) = tailsf (u2).

Informally, a function is k-ISL if the output of every input string a0a1 · · · an is
u0u1 · · ·un where ui is a string which only depends on ai and the k − 1 input symbols
before ai (so ai−k+1ai−k+2 · · · ai−1).

The theorem below establishes an automata-theoretic characterization of ISL func-
tions.

Theorem 6.5. A function f is ISL iff there is some k such that f can be described
with a SFST for which

1. Q ⊆ Σ≤k−1 ∪ {q0, qf}
2. (q0,o, lcp(f(Σ∗)), λ) ∈ δ
3. (∀q ∈ Q \ {q0},∀a ∈ Σ, ∀u ∈ Γ∗)[

(q, a, u, q′) ∈ δ ⇒ q′ = suffk−1(qa)
]
.

Proof. The complete proof of this theorem is given by Chandlee et al. [2014]. We do
not reproduce it here since the proof of Theorem 6.13 is a generalization of it.

This theorem helps make clear how ISL functions are Markovian: the output for
input symbol a depends on the last (k − 1) input symbols. Also, since the transducer
defined in Theorem 6.5 is deterministic, it is unique and we refer to it as T ISL

f . T ISL
f

may not be isomorphic to TCf . Figure 6.1 shows T ISL
f (with k = 2) and TCf for the

identity function.1

Figure 6.1: Non-isomorphic T ISL
f (left) and TCf (right) (traditional SFSTs)

1In all figures, single-symbol transition labels indicate that the input and output are identical, and
the final output function is represented as a transition on the end-of-word symbol n.

146 Chapter 6. On Learning with Locality Constraints

In an already cited paper [Chandlee et al., 2014] we provided a learning algorithm
called ISLFLA for ISL functions using a state merging approach, and proved the fol-
lowing theorem:

Theorem 6.6. ISLFLA identified in polynomial time and data the class of k-ISL func-
tions in the sense of Definition 5.9.
Its time complexity is in O(n · m · k · |Σ|) where n is sum of the length of the input
strings of the learning sample and m is the length of the longest output string in this
sample.
The size of its exhibited characteristic sample is inO(|Q�|·|Σ|·k·m+|Q�|2·m+|Q�|·|Σ|·p)
where Q� is the set of states of the target transducer, and p = max{|v| | (q,n, v, qf) ∈
δ�}, with δ� the transition function of the target DSFST.

6.3.2 Output Strictly Local functions

To design OSL we first need to define the prefix function associated to a subsequential
function.

Definition 6.2 (Prefix function). Let f : Σ∗ → ∆∗ be a subsequential function. We
define the prefix function fp associated to f as a function from Σ∗ to ∆∗ such that
fp(w) = lcp{f(wΣ∗)}.

This definition allows for separation of what happens during the computation from
what happens at its end.

Two simple but useful remarks can be done about prefix functions:

Remark 6.7. if T is the canonical transducer of f then fp(w) = u ⇐⇒
∃q, (q0, w, u, q) ∈ δ∗T .

Remark 6.8. If f is sequential then f = fp.

We can now give the definition of OSL functions.

Definition 6.3 (Output Strictly Local Function). We say that a subsequential function
f is k-OSL if for all w1, w2 in Σ∗, Suffk−1(fp(w1)) = Suffk−1(fp(w2))⇒ tailsf (w1) =

tailsf (w2).

The Definition of k-OSL transducers is slightly more technical than the one of k-ISL
transducers:

Definition 6.4 (k-OSL transducer). An onward DSFST T = 〈Q, q0, qf ,Σ,∆, δ〉 is
k-OSL if

1. Q = S ∪ {q0, qf} with S ⊆ ∆≤k−1

2. (∀u ∈ ∆∗)
[
(q0,o, u, q′) ∈ δ =⇒ q′ = Suffk−1(u)

]

6.3. Input and Output Strictly Local functions 147

3. (∀q ∈ Q\{q0},∀a ∈ Σ, ∀u ∈ ∆∗)[
(q, a, u, q′) ∈ δ =⇒ q′ = suffk−1(qu)

]
.

We proved in a recent paper [Chandlee et al., 2015] that:

• Any k-OSL transducers computes a k-OSL function;

• The following theorem holds, which implies that k-OSL functions and functions
represented by k-OSL DSFSTs exactly correspond.

Theorem 6.9. Let f be a k-OSL function. The DSFST T defined as followed computes
f and is a k-OSL transducer:

• Q = S ∪ {q0, qf} with S ⊆ ∆≤k−1

• (q0,o, u, Suffk−1(u)) ∈ δ ⇐⇒ u = fp(λ)

• a ∈ Σ, (q, a, u, Suffk−1(qu)) ∈ δ, ⇐⇒ (∃w)
[
Suffk−1(fp(w)) = q ∧ fp(wa) = vqu

with v = fp(w) · q−1
]
,

• (q,n, u, qf) ∈ δ ⇐⇒ u = fp(wq)
−1 · f(wq), where wq = minC{w |

∃u, (q0,ow, u, q) ∈ δ∗}.

The diagram below helps express pictorially how the transitions are organized per
the second and third bullets above. The input is written above the arrows, and the
output written below.

q0
ow−−−−−−→

fp(w)=vq
q

a−−→
u

q′

The detailed proof can be found in the already cited paper and we also refer the
Reader to the proof of Theorem 6.13 that generalizes the one of Theorem 6.9.

A learning algorithm called OSLFIA was designed and the following theorem
proven [Chandlee et al., 2015]:

Theorem 6.10. OSLFIA identifies the k-OSL functions in polynomial time and data.
Its time complexity is in O(n+m(n+ |S|)) where n =

∑
(w,u)∈S |w| and m = max{|u| :

(w, u) ∈ S}. It is thus sub-quadratic.
The size of its exhibited characteristic sample is in O((m�+ |Q�|)(|Q�|+ |Σ||δ�|) where
T � = 〈Q�, q0� , qf�Σ,∆, δ�, 〉 is the target transducer, and m� =

∑
(q,σ,u,q′)∈δ� |u|. It is

thus quadratic in the size of T �.

Once again we omit the proofs here since they can be found in the cited paper and
since the ones for IOSL functions in Section 6.4 are generalized versions.

148 Chapter 6. On Learning with Locality Constraints

6.4 Input-Output Strictly Local functions

6.4.1 Definition

By mixing the ISL and OSL approaches, one can define an encompassing class of func-
tions:

Definition 6.5 (Input-Output Strictly Local Function). We say that a subsequen-
tial function f is (k, `)-IOSL if for all w1, w2 in Σ∗, Suffk−1(w1) = Suffk−1(w2) and
Suff`−1(fp(w1)) = Suff`−1(fp(w2))⇒ tailsf (w1) = tailsf (w2).

6.4.2 Automata Characterization

We define (k, `)-IOSL transducers.

Definition 6.6 ((k, `)-IOSL transducer). We say that an onward DSFST T =

〈Q, q0, qf ,Σ,∆, δ, 〉 is (k, `)-IOSL if

1. Q = S ∪ {q0, qf} with S ⊆ Σ≤k−1 ×∆≤`−1

2. (∀u ∈ ∆∗)
[
(q0,o, u, (q, q′)) ∈ δ =⇒ q = λ and q′ = Suff`−1(u)

]
3. (∀(q, q′) ∈ Q \ {q0},∀a ∈ Σ, ∀u ∈ ∆∗)[

((q, q′), a, u, (r, r′)) ∈ δ =⇒ r = Suffk−1(qa) and r′ = suff`−1(q′u)
]
.

We show next that (k, `)-IOSL functions and (k, `)-IOSL DSFST exactly correspond.

Lemma 6.11 (Extended transition function). Let T = 〈Q, q0, qf ,Σ,∆, δ〉 be a (k, `)-
IOSL DSFST. We have

(q0,ow, u, (q, q′)) ∈ δ∗ =⇒ q = Suffk−1(w) and q′ = Suff`−1(u)

Proof. The proof is done by recursion on the size of w The initial case is valid for
|w| = 0 since if (q0,o, u, (q, q′)) ∈ δ∗ then (q0,o, u, (q, q′)) ∈ δ and by Definition
6.6, q = λ = Suffk−1(w) and q′ = Suff`−1(u). Suppose now that the lemma holds
for inputs of size n. Let w be of size n such that (q0, w, u, (r, r

′)) ∈ δ∗ and sup-
pose ((r, r′), a, v, (q, q′)) ∈ δ (i.e. (q0, wa, uv, (q, q

′)) ∈ δ∗). By recursion, we know
that r = Suffk−1(w) and r′ = Suff`−1(u). By definition of (k, `)-IOSL SFST,
q = Suffk−1(ra) = Suffk−1(Suffk−1(wa)) = Suffk−1(wa) and q′ = Suff`−1(rv) =

Suff`−1(Suff`−1(u)v) = Suff`−1(uv) (by Remark 6.1).

Lemma 6.12. Any (k, `)-IOSL DSFST corresponds to a (k, `)-IOSL function.

Proof. Let T = 〈Q, q0, qf ,Σ,∆, δ〉 be a (k, `)-IOSL DSFST for a function f and
let w1, w2 in Σ∗ such that Suffk−1(w1) = Suffk−1(w2) and Suff`−1(fp(w1)) =

Suff`−1(fp(w2)). By remark 6.7 there exists (q, q′), (r, r′) ∈ Q such that

6.4. Input-Output Strictly Local functions 149

(q0,ow1, f
p(w1), (q, q

′)) ∈ δ∗ and (q0,ow2, f
p(w2), (r, r

′)) ∈ δ∗. By lemma 6.11 q =

Suffk−1(w1) = Suffk−1(w2) = r and q′ = Suff`−1(fp(w1)) = Suff`−1(fp(w2)) = r′.
Thus (q, q′) = (r, r′) which implies tailsf (w1) = tailsf (w2). Therefore f is a (k, `)-
IOSL function.

We now need to show that every (k, `)-IOSL function can be represented by a (k, `)-
IOSL DSFST. An issue here is that one cannot work from the canonical transducer
since its states are defined in terms of its tails, which themselves are defined only in
terms of input strings, not output strings. Hence, the proof below is constructive.

Theorem 6.13. Let f be a (k, `)-IOSL function. The DSFST T defined as followed
computes f :

• Q = S ∪ {q0, qf} with S ⊆ Σ≤k−1 ×∆≤`−1,
• (q0,o, u, (q, Suff`−1(u))) ∈ δ ⇐⇒ q = λ and u = fp(λ),
• ((q, q′), a, u, (Suffk−1(qa), Suff`−1(q′u))) ∈ δ ⇐⇒ ∃w : Suffk−1(w) = q ∧
Suff`−1(fp(w)) = q′ ∧ fp(wa) = vq′u with v = fp(w) · q′−1,
• ((q, q′),n, u, qf) ∈ δ ⇐⇒ u = fp(w(q,q′))

−1 · f(w(q,q′)) where w(q,q′) = minC{w |
∃u, (q0,ow, u, (q, q′)) ∈ δ∗}.

The diagram below helps express pictorially how the transitions are organized per the
second bullet above. The input is written above the arrows, and the output written
below.

q0
ow−−−−−−−→

fp(w)=vq′
(q, q′)

a−−→
u

(r, r′) = (Suffk−1(qa), Suff`−1(q′u))

Note that T is a (k, `)-IOSL transducer by construction.
To prove this result, we are going to show first the following lemma:

Lemma 6.14. Let T be the transducer defined in Theorem 6.13. We have:

∃(r, r′) ∈ Q, (q0,ow, u, (r, r′)) ∈ δ∗ ⇐⇒ fp(w) = u

Proof. (⇒) Suppose (q0,ow, u, (r, r′)) ∈ δ∗. The proof is by recursion on the length of
w.

If |w| = 0, we have (q0,o, u, (r, r′)) ∈ δ which implies r = λ, r′ = Suff`−1(u) and
u = fp(λ) by the second item of the construction of the DSFST.

Suppose the result holds for w of size n and pick such a w. Suppose then that
(q0,owa, u, (r, r′)) ∈ δ∗. By the definition of the extended transition function, there ex-
ists u1, u2, (q, q′) such that u = u1u2, (q0,ow, u1, (q, q′)) ∈ δ∗ and ((q, q′), a, u2, (r, r

′)) ∈
δ. We have fp(w) = u1 (by recursion) and thus q′ = Suff`−1(fp(w)) (by Lemma 6.11).

By construction of the transducer, r′ = Suff`−1(q′u2) and thus fp(wa) =

vq′u2 with v = fp(w) · Suff`−1(fp(w))−1. Therefore fp(wa) = vq′u2 = fp(w) ·

150 Chapter 6. On Learning with Locality Constraints

Suff`−1(fp(w))−1q′u2 = fp(w) · Suff`−1(fp(w))−1Suff`−1(fp(w))u2 = fp(w)u2 =

u1u2 = u.
(⇐) The proof is again by recursion on the length of w.

Let |w| = 0, and let u = fp(λ). By construction of T , (q0,o, u, (λ, Suff`−1(u))) ∈ δ,
which validates the base case.

Suppose the result holds for w of size n and pick such a w. Suppose now that
fp(wa) = u. As f is subsequential, there exists u1 such that fp(w) = u1. By
recursion, there exists (q, q′) such that (q0,ow, u1, (q, q′)) ∈ δ∗. By Lemma 6.11,
q′ = Suff`−1(u1) = Suff`−1(fp(w)). By definition fp(wa) = u1u

−1
1 · u and then

fp(wa) = u1 · Suff`−1(u1)−1Suff`−1(u1)u−11 · u. We thus have fp(wa) = vq′u′, with
v = u1 · Suff`−1(u1)−1 = fp(w) · Suff`−1(fp(w))−1 and u′ = u−11 · u. By construction
we then have ((q, q′), a, u′, (Suffk−1(qa), Suff`−1(q′u′))) ∈ δ. As u1u′ = u1u

−1
1 · u = u,

we have (q0,owa, u, (Suffk−1(qa), Suff`−1(q′u′))) ∈ δ∗.

We now provide the proof of Theorem 6.13.

Proof. Let T be the transducer defined in Theorem 6.13 and let tT be the function it
computes. We show that ∀w ∈ Σ∗,

tT (w) = u⇐⇒ f(w) = u

By Lemma 6.14 we know that (q0,ow, u, (r, r′)) ∈ δ∗ ⇐⇒ fp(w) = u. By
construction of the DSFST, we have ((r, r′),n, fp(w(r,r′))

−1 · f(w(r,r′)), qf) where
w(r,r′) = minC{w | ∃u, (q0,ow, u, (r, r′)) ∈ δ∗}. Therefore tT (w(r,r′)) = ufp(w(r,r′))

−1 ·
f(w(r,r′)) = fp(w(r,r′))f

p(w(r,r′))
−1 · f(w(r,r′)) = f(w(r,r′)).

We have Suff`−1(u) = Suff`−1(fp(w(r,r′))) = Suff`−1(fp(w)) and Suffk−1(w) =

r = Suffk−1(w(r,r′)) (By Lemma 6.11). As f is a (k, `)-IOSL function, we thus
have tailsf (w(r,r′)) = tailsf (w). This implies in particular that (λ, fp(w(r,r′))

−1 ·
f(w(r,r′))) ∈ tailsf (w). Thus f(w) = fp(w)fp(w(r,r′))

−1 · f(w(r,r′))). By construction,
we have tT (w) = ufp(w(r,r′))

−1 · f(w(r,r′)) = fp(w)fp(w(r,r′))
−1 · f(w(r,r′)) = f(w).

6.4.3 Relations among classes

Trivially any (k, 1)-IOSL functions is a k-ISL function (and vice versa) and any (1, `)-
IOSL function is a `-OSL function (and reciprocally).

Lemma 6.15. The classes of ISL functions and of OSL functions are strictly included
in the class of IOSL functions.

Proof. We need to exhibit a (k, `)-IOSL function that is not k′-ISL [resp. `′-OSL] for
any k′ [resp. any `′].

Given k and `, we pick the function that rewrites waw′ to wbw′ if w′ = ak−1 and
Suff`−1(fp(w)) = b`−1, and to waw′ otherwise (the function does not change the b’s).

6.4. Input-Output Strictly Local functions 151

(b, b)⋊

(, λ)⋊q
0

(a, a)⋊

(bb, b)

(ab, b)

(aa, a)

(ba, b)

(aa, b)
 ⋊ | λ

 ⋉ | λ

b | b

 a | a

b | b

 a | a

a | a

b | b

b | b

b | b

b | b

 a | λ

 a | λ
 a | b

 b | aab

 a | λ

a | λ

 b | ab

 ⋉ | λ

 ⋉ | λ

 ⋉ | λ

 ⋉ | λ

 ⋉ | λ

 ⋉ | a

 ⋉ | aa

Figure 6.2: A graphical representation of an IOSL transducer (the final state is not
drawn for readability reasons) It rewrites an a into b if it is followed by 2 other a’s and
if the suffix of the current output is made of one b: it is thus a (2,1)-IOSL transducer.
Proof of Lemma 6.15 shows that the corresponding function is neither ISL nor OSL.

152 Chapter 6. On Learning with Locality Constraints

This function is obviously (k, `)-IOSL. An example of the DSFT for the correspond-
ing (3, 2)-IOSL function is given in Figure 6.2.

We now prove that given k and ` there does not exists any k′ such that the func-
tion is k′-ISL. Indeed, for any k′, we have Suffk

′−1(b`ak
′−1) = Suffk

′−1(ak
′−1) but

(ak, bk
′
ak−1) ∈ tail(b`ak

′−1) while (ak, ak) ∈ tail(ak
′−1), and thus tails(b`ak

′−1) 6=
tails(ak

′−1).
Finally, we prove that given k and ` there does not exists any `′ such that the

function is `′-OSL. For all `′ > 0, we have Suff`
′−1(fp(b`−1)) = Suff`

′−1(b`−1) =

Suff`
′−1(fp(b`−1ak−1)) but (a, a) ∈ tails(b`−1) while (a, bak−1) ∈ tails(b`−1ak−1)

and therefore tails(b`−1) 6= tails(b`−1ak−1)

6.5 Learning IOSL functions

6.5.1 The Learning Algorithm

In Algorithm 2 we present an algorithm which we show learns the IOSL functions under
the criterion introduced in Definition 5.9. We call this the Input-Output Strictly Local
Function Inference Algorithm (IOSLFIA). We assume Σ, ∆, k, and l are fixed and not
part of the input to the learning problem.

We define the observable prefix function on a finite set S as followed fpS(w) =

lcp({u ∈ ∆∗ | x ∈ Σ∗ : (wx, u) ∈ S}).
Essentially, the algorithm computes a breadth-first search through the states that

are reachable given the learning sample: the set C contains the states already checked
while R is a queue made of the states that are reachable but have not been treated
yet. smallest stores the input string that allow the discovery of the corresponding
state. At each step of the main loop, IOSLFIA treats the first state (q, q′) that has
been put in the queue but has not been treated and computes whenever possible the
transitions that leave that state. The output associated with each added transition is
the longest common prefixes of the outputs associated with the smallest input prefix
in the sample that allows the state to be reachable. This ensures that at every point
in the construction of the transducer, it is onward. Consequently, the output of the
algorithm is a (k, `)-IOSL transducer.

6.5.2 Theoretical Results

Here we establish theoretical results, which culminate in the theorem that IOSLFIA
identifies the (k, `)-IOSL functions in polynomial time and data (Definition 5.9).

We first prove the following lemma:

Lemma 6.16. For any input sample S, IOSLFIA produces its output in time polyno-
mial in the size of S.

6.5. Learning IOSL functions 153

Algorithm 2 IOSLFIA
Data: A sample S ⊂ Σ∗ ×∆∗ and k, ` ∈ N
D ← pref({w | ∃u, (w, u) ∈ S});
Compute fpS(·);
(q, q′)← (λ, Suff`−1(fpS(λ))); smallest(q, q′)← λ;
δ ← {(q0,o, fpS(λ), (q, q′))};
R← {(q, q′)}; C ← ∅;
while R 6= ∅ do

(q, q′)← First(R);

s← smallest(q, q′);

if ∃u s.t. (s, u) ∈ S then
δ ← δ ∪ {((q, q′),n, fpS(s)−1 · u, qf)};

for all a in Σ do
if sa ∈ D then

(r, r′)← (Suffk−1(sa), Suff`−1(fpS(sa)));
u← fpS(s)−1 · fpS(sa);
δ ← δ ∪ ((q, q′), a, u, (r, r′);
if (r, r′) /∈ R ∪ C then
R← R ∪ {(r, r′)};
smallest(r, r′)← sa;

R← R \ {(q, q′)}; C ← C ∪ {(q, q′)};

return 〈C ∪ {q0, qf}, q0, qf ,Σ,∆, δ〉;

154 Chapter 6. On Learning with Locality Constraints

Proof. The computation of fpS(·) can be easily done using a prefix tree transducer
(PTT): this is a prefix tree acceptor on the input, that also contains the output
information. The cost to build such a transducer and to make in onward is in
O(mn log(n)) [Oncina et al., 1993] where n =

∑
(w,u)∈S |w| and m = max{|u| : (w, u) ∈

S}. Once the PTT is built, computing fpS(w) for any w can be done in O(|w|). Us-
ing a hash-table for storing fpS(·) costs thus O(n) to be constructed and then fpS(·) is
accessible in O(1).

The main loop is used at most |Σ|k−1|∆|`−1 which is constant since Σ, ∆, k and
l are fixed for any learning sample. The first conditional can be tested in O(n) using
the PTT and the computation of the eventual transition then takes O(m). The smaller
loop is executed |Σ|+ 1 times. At each execution: the first conditional can be tested in
time linear in n; the computation of (r, r′) and of u can be done in O(m); computing
the suffixes requires at most |sa|+m steps; The second conditional can be tested and
executed in O(1); all the other instructions can be done in constant time. The overall
computation time is thus in O(mn log(n)+n+|∆|k−1(|Σ|+1)(n+m+n+m+n+m)) =

O(mn log(n))) which is polynomial in the size of the learning sample.

Next we show that for any (k, `)-IOSL function f , there is a finite kernel of data
consistent with f (a ‘seed’) that is a characteristic sample for IOSLFIA.

Definition 6.7 (A IOSLFIA seed). Given a (k, `)-IOSL transducer 〈Q, q0, qf ,Σ,∆, δ〉
computing a (k, `)-IOSL function f , a sample S is a IOSLFIA seed for f if

• For all (q, q′) ∈ Q such that ∃v ∈ ∆∗ ((q, q′),n, v, qf) ∈ δ, (w(q,q′), f(w(q,q′))) ∈ S,
where w(q,q′) = minC{w | ∃u, (q0,ow, u, (q, q′)) ∈ δ∗}

• For all ((q, q′), a, u, (r, r′)) ∈ δ and a ∈ Σ, for all b ∈ Σ such that there exists
((r, r′), b, u′, (s, s′)) ∈ δ, there exists (w, f(w)) ∈ S and x ∈ Σ∗ such that w =

w(q,q′)abx and f(w) is defined. Also, if there exists v such that ((r, r′),n, v, qf) ∈ δ
then (w(q,q′)a, f(w(q,q′)a)) ∈ S.

• For (q0,o, u, (r, r′)) ∈ δ, For all b ∈ Σ such that there exists ((r, r′), b, u′, (s, s′)) ∈
δ, there exists (w, f(w)) ∈ S and x ∈ Σ∗ such that w = abx and f(w) is defined.
Also, if there exists v such that ((r, r′),n, v, qf) ∈ δ then (a, f(a)) ∈ S.

The first item ensures that the prefix that allows the discovery of a state is the
smallest in the target reaching the corresponding state. The second item is a bit more
technical but it aims at ensuring that while considering a transition ((q, q′), a, u, (r, r′)),
the algorithm will have enough information to correctly compute u. This requires a
witness for all transitions leaving (r, r′), which allows the use of the onwardness of the
target to ensure the correctness of fpS(·) for the smallest prefix reaching a state.

In what follows, we set T � = 〈Q�, q0� , qf� ,Σ,∆, δ�〉 be the target (k, `)-IOSL trans-
ducer, f the function it computes, and T = 〈Q, q0, qf ,Σ,∆, δ〉 be the outputted trans-
ducer on a sample.

6.5. Learning IOSL functions 155

Lemma 6.17. If a seed is contained in a sample S, then for any prefix w such that
∃(q, q′) ∈ Q�, w = minC{w′ | ∃u, (q0,ow′, u, (q, q′)) ∈ δ∗�} : f

p
S(w) = fp(w).

Proof. Let (q, q′) ∈ Q� and w = minC{w′ | ∃u, (q0,ow′, u, (q, q′)) ∈ δ∗�}. We have
fpS(w) = lcp({u | ∃x, (wx, u) ∈ S}) = lcp({u | ∃x, f(wx) = u ∧ (wx, u) ∈ S}). The
second item of Definition 6.7 ensures that every transition leaving (q, q′) to a non-final
state is used by at least one element of S (whose input part is prefixed by w), while the
first item ensures that if a transition leaves for qf then (w, f(w)) ∈ S. As the target in
onward, by Lemma 6.2, lcp(outputs(q, q′)) = λ. Therefore fpS(w) = lcp(f(wΣ∗)) =

lcp({u | ∃x, f(wx) = u}) = fp(w).

Lemma 6.18. If a seed is contained in a sample S, then for any prefix w such that
∃(q, q′) ∈ Q�, w = minC{w′ | ∃u, (q0,ow′, u, (q, q′)) ∈ δ∗�}, for any a ∈ Σ such that it
exists ((q, q′), a, u, (r, r′)) ∈ δ�: fpS(wa) = fp(wa).

Proof. Let (q, q′) ∈ Q�, w = minC{w′ | ∃u, (q0,ow′, u, (q, q′)) ∈ δ∗�}, and a ∈ Σ

such that ∃((q, q′), a, u, (r, r′)) ∈ δ�. We have fpS(wa) = lcp({u | ∃x, (wax, u) ∈ S}).
The second item of Definition 6.7 ensures that there is at least one element of the
seed for each transition leaving (r, r′) whose input part is prefixed by wa. Therefore
fpS(wa) = lcp({u | ∃b ∈ Σ, x : (wabx, f(wabx)} ∪ {(wa, f(wa)) | wa ∈ dom(f)}).

We have fp(wa) = lcp(f(waΣ∗)) = lcp({u | ∃b ∈ Σ, x ∈ Σ∗, (wabx, f(wabx))} ∪
{(wa, f(wa)) | wa ∈ dom(f)}). As the lcp of the outputs of (r, r′) is λ (by onwardness)
it implies fp(wa) = fpS(wa).

Lemma 6.19. If a seed is contained in a learning sample S, (q0,ow, u, (r, r′)) ∈ δ∗ ⇐⇒
(q0� ,ow, u, (r, r′)) ∈ δ∗�

Proof. (⇒). The proof is by induction on the length of w. If |w| = 0 then
(q0,o, u, (r, r′)) ∈ δ, r = λ, r′ = Suff`−1(fpS(λ)), and u = fpS(λ) (initial steps
of the algorithm). By lemma 6.17, we have fpS(λ) = fp(λ) as λ is the smallest
input reaching this state. By the definition of a (k, `)-IOSL transducer, we have
(q0� ,o, fp(λ), (λ, Suff`−1(fp(λ))) ∈ δ�.

Suppose the lemma is true for strings of length less than or equal to n. We
refer to this as the first Inductive Hypothesis (IH1). Let wa be of size n + 1

such that (q0,owa, u, (r, r′)) ∈ δ∗. By definition of δ∗, it exists u1, u2, (q, q
′)

such that (q0,ow, u1, (q, q′)) ∈ δ∗, ((q, q′), a, u2, (r, r
′)) ∈ δ, and u = u1u2. By

IH1 (q0� ,ow, u1, (q, q′)) ∈ δ∗� . We want to show (q0� , wa, u, (r, r
′)) ∈ δ∗� i.e.

((q, q′), a, u2, (r, r
′)) ∈ δ�.

First we show that the IH1 also implies that s = smallest((q, q′)) is such that
s = w(q,q′). Since the algorithm works in a breadth-first search, os is the smallest
input that reaches (q, q′) in the constructed DSFST. If w(q,q′)C s then ∃(x, x′) 6= (q, q′)

such that (q0,ow(q,q′), u
′, (x, x′)) ∈ δ∗ because w(q,q′) is a prefix of an input string

156 Chapter 6. On Learning with Locality Constraints

of the sample S (since S contains a seed). Since w(q,q′) C s and |s| ≤ n, by IH1
then (q0� ,ow(q,q′), u

′, (x, x′)) ∈ δ∗� which implies (q, q′) = (x, x′) which contradicts the
supposition that w(q,q′)Cs. If sCw(q,q′), then again as (q0,os, u′, (q, q′)) ∈ δ∗ it implies
(q0� ,os, u′, (q, q′)) ∈ δ∗� by IH1. This contradicts the definition of w(q,q′). Therefore
s = w(q,q′).

We now show the result. Recall that we have ((q, q′), a, u2, (r, r
′)) ∈ δ. By construc-

tion of the algorithm, we have u2 = fpS(smallest(q, q′))−1 · fpS(smallest(q, q′)a) =

fpS(w(q,q′))
−1 · fpS(w(q,q′)a) which is equal to fp(w(q,q′))

−1 · fp(w(q,q′)a) by Lemmas 6.17
and 6.18. By construction of the algorithm, we also have r = Suffk−1(w(q,q′))

and r′ = Suff`−1(fp(w(q,q′)). As (q0� ,ow, u1, (q, q′)) ∈ δ∗� (by IH1) and as wa ∈
pref(dom(f)) there exists ((q, q′), a, v, (x, x′)) in δ�. As T� is onward we have v =

fp(w)−1 · fp(wa) = u2 and as it is a (k, `)-IOSL transducer x = Suffk−1(wa) = r and
x′ = Suff`−1(fp(wa)) = r′. Therefore (q0� ,owa, u, (r, r′)) ∈ δ∗� .

(⇐). This is also by induction on the length of w. If |w| = 0 as T � is on-
ward we have lcp(outputs(q0�)) = lcp(f(Σ∗)) = fp(λ) (Lemma 6.2) and thus
(q0� ,o, fp(λ), (r, r′)) ∈ δ� with r = Suffk−1(λ) = λ and r′ = Suff`−1(fp(λ)) as T � is
(k, `)-IOSL. As w is the smallest input string reaching (r, r′), and as a seed in contained
in the sample, by Lemma 6.17 fpS(w) = fp(w). Therefore, thanks to the initials steps
of the algorithm (q0,o, fp(λ), (r, r′)) ∈ δ.

Suppose the lemma is true for all strings up to length n. We refer to this as the sec-
ond Inductive Hypothesis (IH2). Pick wa of length n+1 such that (q0� ,owa, u, (r, r′)) ∈
δ∗� . By definition of the extended transition function, (q, q′), u1, u2 exist such that
(q0� ,ow, u1, (q, q′)) ∈ δ∗� and ((q, q′), a, u2, (r, r

′)) ∈ δ�, with u1u2 = u. By IH2, we
have (q0,ow, u1, (q, q′)), (q0,ow(q,q′), u

′
1, (q, q

′)) ∈ δ∗ (since w(q,q′) C w).
We want to show ((q, q′), a, u2, (r, r

′)) ∈ δ.
We first show that s = smallest((q, q′)) = w(q,q′). Suppose s C w(q,q′). By con-

struction of the SFST s is a prefix of an element of S which means there exists (x, x′)

such that (q0� ,os, fp(s), (x, x′)) ∈ δ∗� . But by IH2, this implies that (x, x′) = (q, q′)

and the definition of w(q,q′) contradicts s C w(q,q′). Suppose now that w(q,q′) C s. By
the construction of the seed, w(q,q′) is a prefix of an element of the sample, which im-
plies it is considered by the algorithm. As (q0,ow(q,q′), u

′
1, (q, q

′)) ∈ δ∗ by IH2, w(q,q′)

is a smaller prefix than s that reaches the same state which is impossible as s is the
earliest prefix that makes the state (q, q′) reachable. Therefore w(q,q′) = s and thus the
transition from state (q, q′) reading a is created when s = w(q,q′).

Now let v = fpS(sa) = fpS(w(q,q′)a). As the sample contains a seed, we have v =

fp(sa) by Lemma 6.18 and thus (q0� ,ow(q,q′)a, v, (r, r
′)) ∈ δ∗� (Lemma 6.14).

As fpS(s) = fp(s) by Lemma 6.17, fpS(sa) = fp(sa) by Lemma 6.18, and as s =

w(q,q′), we have u2 = fp(w(q,q′))
−1 · fp(w(q,q′)a) = fpS(w(q,q′))

−1 · fpS(w(q,q′)a).
As the target is a (k, `)-IOSL transducer (and thus deterministic) Suff`−1(q′u2) =

r′. Therefore the transition ((q, q′), a, fpS(s)−1 · fpS(sa), (r, r′)) that is added to δ is the

6.6. Conclusion and future works 157

same as the transition ((q, q′), a, u2, (r, r
′)) in δ�. This implies (q0,owa, u, (r, r′)) ∈ δ∗

and proves the lemma.

Lemma 6.20. Any seed for IOSLFIA is a characteristic sample for this algorithm.

Proof. A corollary of Lemma 6.19 is that if a seed is contained into a learning sample
we have (q0,ow, u, (q, q′)) ∈ δ∗ ⇐⇒ fp(w) = u (Lemma 6.11) as the target trans-
ducer is (k, `)-IOSL. For all states (q, q′) of the target where ∃v, ((q, q′),n, v, qf�) ∈
δ�, we have (w(q,q′), f(w(q,q′))) in the seed, which implies the algorithm will add
((q, q′),n, fpS(w(q,q′))

−1 · f(w(q,q′)), qf) to δ. As fpS(w(q,q′)) = fp(w(q,q′)) (Lemma 6.17)
the added transition is exactly the output transition of the target. As every state is
treated only once, this holds for any learning set containing a seed. Therefore, from
any superset of a seed, for any w, the function computed by the outputted transducer
of Algorithm 2 is equal to fp(w)fp(w)−1 · f(w) = f(w)

Lemma 6.21. Given any (k, `)-IOSL transducer T �, there exists a seed for the IOSL
learner that is of size polynomial in the size of T ∗.

Proof. Let T � = 〈Q�, q0� , qf� ,Σ,∆, δ�〉 be the target transducer. There are at most |Q�|
pairs (w(q,q′), f(w(q,q′))) in a seed that corresponds to the first item of Definition 6.7,
each of which being such that |w(q,q′)| ≤ |Q�| and |f(w(q,q′))| ≤ max{|u| | ∃(q, q′) ∈
Q� ((q, q′),n, u, qf)} +

∑
((q,q′),a,u,(r,r′))∈δ� |u|. We denote by m� this last quantity and

note that m� = O(|T �|).
For the elements of the second item of Definition 6.7 we restrict ourselves with-

out loss of generality to pairs (w(q,q′)abw
′, f(w(q,q′)abw

′)) where w′ = minC{y :

f(w(q,q′)aby) is defined}. We have |w′| ≤ |Q�| and |f(w(q,q′)abw
′)| is in O(m�).

There are at most |Σ| + 1 pairs (w(q,q′)abw
′, f(w(q,q′)abw

′)) for a given transition
((q, q′), a, u, (r, r′)) which implies that the overall bound on the number of such pairs is
in O(|Σ||δ|). Adding the pairs (w(q,q′)a, f(w(q,q′)a)), the overall length of the elements
in the seed that fulfill the second item of the definition is in O((|Q�| + m�)(|δ�|(|Σ| +
1) + |Q�|.

The size of the seed studied in this proof is thus in O((m� + |Q�|)(|Q�| + |Σ||δ|)
which is polynomial in the size of the target transducer.

Theorem 6.22. IOSLFIA identifies the (k, `)-IOSL functions in polynomial time and
data.

Proof. Follows immediately from the previous lemmas in this section.

6.6 Conclusion and future works

The algorithm presented here is the simplest expression of the learning idea behind this
work. If one is not interested by theoretical results and simple proofs, it can easily

158 Bibliography

be modified to obtain a more robust version. For instance, w(q,q′) does not have to
be the smallest input string to reach the state (q, q′): it can be for instance the more
informed input string, that is, the one reaching this state for which the most data is
available. The important point is that it is unique for each state. This variant is likely
to work better in practice but the size of the characteristic sample is not ensured to be
polynomial: we presented IOSLFIA in this way for sake of simplicity and for complexity
reasons.

We are currently working on continuations of this work following different directions:
closure properties of the classes, a decision procedure for deciding whether any regular
relation is (k, `)-IOSL or not, and if so returns the smallest (k, `) transducer, etc. On
a longer term, we would like to consider the learning of probabilistic [Akram and de la
Higuera, 2013] semi-deterministic transducers [Beros and de la Higuera, 2016].

Bibliography

H. Ibne Akram and C. de la Higuera. Learning probabilistic subsequential transducers
from positive data. In Proc. of the International Conference on Agents and Artificial
Intelligence, pages 479–486, 2013. 158

A. A. Beros and C. de la Higuera. A canonical semi-deterministic transducer. Funda-
menta Informaticae, 146(4):431–459, 2016. 158

J. Chandlee. Strictly Local Phonological Processes. PhD thesis, The University of
Delaware, 2014. 144

J. Chandlee and J. Heinz. Bounded copying is subsequential: Implications for metathe-
sis and reduplication. In Proc. of the Meeting of the ACL Special Interest Group on
Computational Morphology and Phonology, pages 42–51. Association for Computa-
tional Linguistics, 2012. 142

J. Chandlee, A. Athanasopoulou, and J. Heinz. Evidence for classifying metathesis pat-
terns as subsequential. In Proc. of the West Coast Conference on Formal Linguistics,
pages 303–309. Cascadilla Press, 2012. 142

J. Chandlee, R. Eyraud, and J. Heinz. Learning strictly local subsequential functions.
Transactions of the Association for Computational Linguistics, 2:491–503, 2014. 141,
144, 145, 146

J. Chandlee, R. Eyraud, and J. Heinz. Output strictly local functions. In Proc. of the
Meeting on Mathematics of Language, pages 112–125, 2015. 142, 144, 147

N. Chomsky and M. Halle. The Sound Pattern of English. New York: Harper & Row,
1968. 142

Bibliography 159

R. Frank and G. Satta. Optimality Theory and the generative complexity of constraint
violability. Computational Linguistics, 24(2):307–315, 1998. 142

B. Gainor, R. Lai, and J. Heinz. Computational characterizations of vowel harmony pat-
terns and pathologies. In Proc. of the West Coast Conference on Formal Linguistics,
pages 63–71. Cascadilla Press, 2012. 142

P. García and J. Ruiz. Learning k-testable and k-piecewise testable languages from
positive data. Grammars, 7:125–140, 2004. 143

P. Garcia, E. Vidal, and J. Oncina. Learning locally testable languages in the strict
sense. In Proc. of the Workshop on Algorithmic Learning Theory, pages 325–338,
1990. 143

T. Graf. Logics of phonological reasoning. Master’s thesis, University of California, Los
Angeles, 2010. 142

J. Heinz. The Inductive Learning of Phonotactic Patterns. PhD thesis, University of
California, Los Angeles, 2007. 142, 143

J. Heinz. On the role of locality in learning stress patterns. Phonology, 26(2):303–351,
2009. 142

J. Heinz and R. Lai. Vowel harmony and subsequentiality. In Proc. of the Meeting on
the Mathematics of Language, pages 52–63, 2013. 142

J. Heinz and J. Rogers. Learning subregular classes of languages with factored deter-
ministic automata. In Proc. of the Meeting on the Mathematics of Language, pages
64–71. Association for Computational Linguistics, 2013. 143

Jeffrey Heinz. Learning long-distance phonotactics. Linguistic Inquiry, 41(4):623–661,
2010. 142, 143

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing. Learning with lattice-structured
hypothesis spaces. Theoretical Computer Science, 457:111–127, October 2012. 143

A. Jardine. Computationally, tone is different. Phonology, 33(2):247–283, 2016. 142

A. Jardine, J. Chandlee, R. Eyraud, and J. Heinz. Very efficient learning of structured
classes of subsequential functions from positive data. In Proc. of the International
Conference on Grammatical Inference, volume 34, pages 94–108. PMLR, 2014. 143

C. D. Johnson. Formal Aspects of Phonological Description. The Hague: Mouton, 1972.
142

160 Bibliography

R. Kaplan and M. Kay. Regular models of phonological rule systems. Computational
Linguistics, 20(3):331–378, 1994. 142

M. Kenstowicz and C. Kisseberth. Generative Phonology. Academic Press, Inc., 1979.
142

Huan Luo. Long-distance consonant harmony and subsequantiality, 2014. Qualifying
paper for the University of Delaware’s Linguistics PhD Progam. 142

R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, 1971. 142, 143

D. Odden. Introducing Phonology. Cambridge University Press, 2nd edition, 2014. 142

J. Oncina, P. García, and E. Vidal. Learning subsequential transducers for pattern
recognition tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15:448–458, 1993. 143, 154

Amanda Payne. All dissimilation is computationally subsequential. 93:e353–e371, 12
2017. 142

J. Rogers and G. Pullum. Aural pattern recognition experiments and the subregular
hierarchy. Journal of Logic, Language and Information, 20:329–342, 2011. 142, 143,
144

J. Rogers, J. Heinz, G. Bailey, M. Edlefsen, M. Visscher, D. Wellcome, and S. Wibel.
On languages piecewise testable in the strict sense. In Proc . of the Meeting on
Mathematics of Language, volume 6149 of LNAI, pages 255–265, 2010. 142

J. Rogers, J. Heinz, M. Fero, J. Hurst, D. Lambert, and S. Wibel. Cognitive and
sub-regular complexity. In Proc. of Formal Grammar, volume 8036 of LNCS, pages
90–108, 2013. 142, 143

W. Thomas. Languages, automata, and logic. volume 3, chapter 7. Springer, 1997. 142

Part IV

Conclusion

Chapter 7

Conclusion

Contents
7.1 On congruences . 163
7.2 On representation hierarchies . 164
7.3 To be exhaustive . 165
7.4 Some personal remarks . 166
Bibliography . 167

The work presented in this document compiles the main positive results I obtained
during the past ten years. This research covers a wide part of the field called Gram-
matical Inference. I detail in this conclusion two main points, on two complementary
subjects, that can be made to provide a global overview of these studies. Then, this
conclusion briefly describes other works that were conducted during the past years, and
finishes with some general personal remarks.

7.1 On congruences

Apart from the introducing part, that interrogates from a formal standpoint the notion
of learnability for computational models (Chapter 2), the works of this manuscript share
common characteristics. They all propose learning algorithms for specifically shaped
computational models, study the abilities and limits of these algorithms, and provide
characterizations for the learned classes.

These works actually share more than a common method and structure: a global
learning task resolution can be drawn from these results. Indeed, they all rely on the
observation of congruence classes in a set of data, and the outputted computational
model is generated by examining how these classes are combined in the data.

In details, the distributional learning algorithms (Part II) focus on the congruence
defined by contexts. For strings, this notion is well-understood which allows the studies
on complex relations between classes, in the work presented here (Chapter 3) and its
continuations. For graphs (Chapter 4), it was not studied previously and we had to
carefully defined the needed notions and to limit our research to simple classes combi-
nation.

164 Chapter 7. Conclusion

In functional learning (Part III), the congruence used is defined over a right con-
tinuation, called tails, rather than a two sides context. This implies a finite number
of classes that allows the use of finite state machines. It is worth noticing that this
is a functional extension of the learning algorithms for languages: works on learning
regular languages, like the well-known RPNI algorithm [Oncina and García, 1992], also
fulfill this global behavior by focusing on congruence defined by sets of suffixes, called
residuals.

Furthermore, this global learning problem resolution can also be observed when
stochastic computational models are considered, a GI framework not described in this
manuscript despite some personal works on the matter (see Section 7.3 for some refer-
ences). Regardless of its technicality, the work on residual automata [Esposito et al.,
2002] is a straightforward continuation of the one of regular languages: the notion of
stochastic residual is introduced as an analogue of the syntactic congruence and the
learning algorithm aims at observing these stochastic classes in a multi-set of examples.

Even the recently introduced and successful approach named spectral learning [Balle
et al., 2014] can be analyzed following this grid: the learning algorithms correspond to a
principal component analysis [Bailly et al., 2009] in the space of stochastic residuals and
(partially) observable in a learning sample. The aim is thus to find the non co-linear
residuals that define the stochastic languages in an analogy to finding the non-redundant
residuals that define the canonical automata in regular languages learning algorithms.

7.2 On representation hierarchies

Another general point can be made to conclude this manuscript. It concerns the way
computer scientists conceive and structure the universe of all computational models.

The usual hierarchy of formal languages is the one of Chomsky [Chomsky, 1959]: 4
classes defined by restrictions on the syntax of grammatical rewriting rules. However,
there exists good reasons to move beyond this hierarchy that is based only on the
syntactic form of rules: for instance, the Chomsky hierarchy tends to group into classes
representations that are fundamentally different since crucial properties like equivalence
decidability are not shared by all elements of a class [Sénizergues, 2001]. The same
occurs when one considers natural languages: it is commonly accepted that they are all
contained in an intermediate class in the hierarchy, called mildly context-sensitive [Joshi,
1985], that may even be orthogonal to the classes (as not all context-free structures
may be required for natural languages). The fact that no cognitive evidence exists
to differentiate these classes [Öttl et al., 2015] is also a strong argument against the
hierarchy.

Despite its drawbacks, few have been done to overcome the Chomsky hierarchy and
to propose a new one. An exception is the work of Kallmeyer [2010] that argues in
favor of a hierarchy defined at a (natural) language level and not at a representational

7.3. To be exhaustive 165

one. Though her point of view is biased toward her field of computational linguistics,
the idea of changing the support of the hierarchy is appealing.

A possibility that the work presented in this manuscript allows to formulate is to
propose a hierarchy based on the identifiability of the representation classes. Indeed,
we have argued in the previous section that learning results of computational model
classes can be seen through the prism of the type of congruence sought in the data: this
provides a natural way to classify classes of formal languages. This promising sketch
for a new hierarchy can be refined by specifying subclasses based on the complexity of
the structural combination between congruence classes.

Importantly, the simplest class of this hierarchy would be the same than the one of
Chomsky: the regular grammars are the one identifiable when the simplest congruence is
of interest, that is the suffix/prefix one. The outlines of the following classes have still to
be carefully drawn, but the work on distributional learning and the recent decidability
result of classes defined in this context [Kanazawa and Kappé, 2018] provide strong
bases to build the next level of the hierarchy.

This positions identification on an orthogonal standpoint than the one discussed in
the introduction of this manuscript. Instead of seeing it as a rival of approximation, we
can move away from machine learning considerations and understand identification as a
structuring property for the set of computational models. In this context, identification
is the process of decoding the information contained in a set of data in order to recover
the corresponding model. One can even reverse the perspective and see the notion of
characteristic sample as a way to code a language in an adversarial framework.

7.3 To be exhaustive

This document has been thought as a witness of the research work handled since my
PhD. Obviously, it cannot be exhaustive: all researchers know that a lot of dead-ends
have to be investigated before finding a conclusive path. And we all have on-going
works not mature enough, or too partial, to be written down.

Moreover, even some interesting positive projects that have been investigated are
not presented in this HDR. It is the case for instance of the two international challenges
I co-organized: the Probabilistic Automata Learning Competition (PAutomaC) [Verwer
et al., 2014] and the Sequence PredIction ChallengE (SPiCe) [Balle et al., 2017]. The
success of both challenges mostly relied on a wide understanding of the state of the art
on the corresponding task, and on a well-designed process for the data generation.

Another non described work concerns the spectral learning of weighted automata.
This approach is, together with the distributional learning presented in Part II, the
main success in grammatical inference over the past ten years. It provides a way to
infer a finite state machine that represents a probability distribution from a multi-set
of data. The theoretical study of this approach was initiated independently by Hsu

166 Chapter 7. Conclusion

et al. [2009] and Bailly et al. [2009] and enjoyed tremendous developments since then
(see for instance the survey from Balle et al. [2014] for more details). In this context,
I participated to the development of the first toolbox that allows the easy use of the
different variants of the algorithm [Arrivault et al., 2016, 2017].

Following this first excursion in statistical machine learning, I recently opened a
new line of research by proposing to use the spectral learning algorithm to extract a
computational model (a weighted automaton) from any black box computing a real
value from sequential data. In particular, together with Stéphane Ayache, we show
during Spring 2018, thanks to a 5 month last year Master student internship, that
this idea is promising for explaining and interpreting the behavior of Recurrent Neural
Networks [Ayache et al., 2018], the main deep learning model used for sequential data.

7.4 Some personal remarks

It is important to conclude this document by pointing out the scientific context of
the work presented here. Indeed, it has mainly be conducted in a team of brilliant
and humanly exceptional researchers, namely the QARMA team of the ex Labo-
ratoire d’Informatique Fondamentale in Marseille (now merged into the Laboratoire
d’informatique et Systèmes). However, the main focus of the members of QARMA is
statistical machine learning, and so was the description of my tenure position. Given
my background and my main research interests, this has led to scientific difficulties for
integration. For instance, none of the works presented in the core of this manuscript
has been done in collaboration with a current member of the team. This also explains,
at least partly, why no co-mentoring of PhD students from Marseille have been done
(my two experiences of PhD tutoring were all done via collaborations with foreign uni-
versities, on project handled by them). To be clear on the subject: I do not regret
this inadequacy between my background and the central scientific concern of the team,
au contraire, this is a remarkable richness that allowed me to grow and to deepen my
knowledge of a very dynamic - and crucial - field: it has just slowed down the course of
the research presented here.

A more important issue endangered - and still threatens - the type of work presented
here: the impossibility to found it. Indeed, I spent the last 5 years asking all possible
French funding agencies for money to develop promising research, without any success.
For instance, I tried several times to fund a research aiming at investigating the links
between the spectral and the distributional learnings, since these approaches share
analogue starting points. Of course, my ability to write down a convincing grant can be
questioned, but the fact that most of these grant proposals were written in collaboration
with researchers who were used to succeed tends to dismiss this point. It is thus more
likely to be a consequence of the combination of two factors: the recent effervescence
around deep learning that is draining ML scientific funding despite its strong engineering

Bibliography 167

flavor, and the chronic under-funding of French academic research, accentuated by the
ideological and out of touch policies of its Ministry of Research.

This is the reason why this general conclusion does not contain future research
direction: hundreds of pages on that matter have been written in the form of grant
proposals, but none of this will be achieved due to the absence of funding. I thus chose
to not describe here potential continuations or promising research directions that are
very unlikely to be developed.

In this context, this manuscript can be seen as a way to close the page of my research
about learning computational models. One should never say never, and it is likely that
on-going collaborations will continue on some of the topics presented here, but it will no
longer be at the core of my research work. As I have been moving to more mainstream
machine learning for a couple of years, the transition should not be too hard to achieve.
Notice however that this move is not due to a lack of interest for the thematic, or to the
lack of its potential impact: I am convinced this research is promising, useful, and has
its role to play in the future of Machine Learning. It is just that, after swimming against
the tide during ten years, I decided to seize the opportunity caused by the explosion of
interest around the domain to move to more mainstream considerations.

To conclude on a positive note, I want to emphasize how glad I am to be able to
participate with my modest means to the blooming of the field of Machine Learning:
if computability and decidability have been at the core of Computer Science during
the last 70 years, the future of this science will undeniably pass by the development
of a theory of learnability. For reasons exposed throughout this manuscript and this
conclusion, I hope GI will play a decisive role in this evolution.

Bibliography

D. Arrivault, D. Benielli, F. Denis, and R. Eyraud. Sp2Learn: A Toolbox for the
Spectral Learning of Weighted Automata. In Proc. of the International Conference
on Grammatical Inference, 2016. 166

D. Arrivault, D. Benielli, F. Denis, and R. Eyraud. Scikit-SpLearn: a toolbox for the
spectral learning of weighted automata compatible with scikit-learn. In Conférence
francophone en Apprentissage, 2017. 166

S. Ayache, R. Eyraud, and N. Goudian. Explaining black-boxes on sequential data
using weighted automata. In Proc. of the International Conference on Grammatical
Inference, 2018. To appear. 166

R. Bailly, F. Denis, and L. Ralaivola. Grammatical inference as a principal component
analysis problem. In International Conference on Machine Learning, pages 33–40,
2009. 164, 166

168 Bibliography

B. Balle, X. Carreras, F. Luque, and A. Quattoni. Spectral learning of weighted au-
tomata. Machine Learning, 96(1-2):33–63, 2014. 164, 166

B. Balle, R. Eyraud, F. M. Luque, A. Quattoni, and S. Verwer. Results of the se-
quence prediction challenge (SPiCe): a competition on learning the next symbol
in a sequence. In Proc. of the International Conference on Grammatical Inference,
volume 57 of PMLR, pages 132–136, 2017. 165

N. Chomsky. On certain formal properties of grammars. Information and Control, 2
(2):137–167, 1959. 164

Y. Esposito, A. Lemay, F. Denis, and P. Dupont. Learning probabilistic residual finite
state automata. In Grammatical Inference: Algorithms and Applications, pages 77–
91. Springer Berlin Heidelberg, 2002. 164

D. Hsu, S. Kakade, and T. Zhang. A spectral algorithm for learning hidden markov
models. In Conference on Computational Learning Theory, 2009. 165

A.K. Joshi. Tree adjoining grammars: How much context-sensitivity is required to
provide reasonable structural descriptions? In Karttunen L. Dowty, D. and A. Zwicky,
editors, Natural Language Parsing. Cambridge University Press, 1985. 164

L. Kallmeyer. Parsing Beyond Context-Free Grammars. Springer Publishing Company,
Incorporated, 2010. 164

M. Kanazawa and T. Kappé. Decision problems for clark-congruential languages. In
Proc. of the International Conference on Grammatical Inference, 2018. to appear.
165

J. Oncina and P. García. Inferring regular languages in polynomial update time. Pattern
Recognition and Image Analysis, 1992. 164

B. Öttl, G. Jäger, and B. Kaup. Does formal complexity reflect cognitive complexity?
investigating aspects of the chomsky hierarchy in an artificial language learning study.
PLoS ONE, 10, 2015. 164

G. Sénizergues. L(a) = l(b)? decidability results from complete formal systems. Theor.
Comput. Sci., 251(1-2):1–166, 2001. 164

S. Verwer, R. Eyraud, and C. de la Higuera. PAutomaC: a probabilistic automata and
hidden markov models learning competition. Machine Learning, 96(1-2):129–154,
2014. 165

Part V

Annexes

Curriculum Vitae

Current Situation

Ph.D in Computer Science
Maitre de Conférences at the Aix-Marseilles University (France) - tenure
Member of the steering committee of the International Community in Grammatical
Inference (chair between 2014 and 2018)

Academic Degrees

Doctoral Dissertation. "Grammatical Inference of Context-Free Languages",
University Jean Monnet of Saint-Etienne, 2006.
Under the co-supervision of Pr. Colin de la Higuera (University of Nantes) and Pr.
Jean-Christophe Janodet (University of Evry).

MSc. in Computer Science. Ecole Nationale des Mines de Saint-Etienne, 2003.
Concentration: multi- agent systems, machine learning, grammatical inference.
Final thesis: "Learning automata with a splitting-state process".
First year thesis: "Simulations of social networks using cellular automata".

Licence in Computer Science. University Jean-Monnet, Saint-Etienne, 2001. Major
in Computer Science, minor in Mathematics.

Publications

All publications can be found at http://pageperso.lis-lab.fr/~remi.eyraud/.

Book Chapter

"Efficiency in the identification in the limit paradigm", Rémi Eyraud, Jeffrey Heinz,
Ryo Yoshinaka, in Topics in Grammatical Inference, Springer, 2016

International Journals

• "Designing and Learning Substitutable Plane Graph Grammars", Rémi Eyraud,
Jean-Christophe Janodet, Tim Oates, Frédéric Papadopoulos, Fundamenta Infor-
maticae, 2016

http://pageperso.lis-lab.fr/~remi.eyraud/

172

• "Learning Strictly Local Subsequential Functions", Jane Chandlee, Rémi Eyraud,
Jeffrey Heinz, Transactions of the Association for Computational Linguistics,
2014.

• "PAutomaC: a probabilistic automata and hidden Markov models learning com-
petition", Sicco Verwer, Rémi Eyraud, Colin de la Higuera, Machine Learning
Journal, 2014

• "Using Contextual Representations to Efficiently Learn Context-Free Languages",
Alexander Clark, Rémi Eyraud, Amaury Habrard, Journal of Machine Learning
Research, 2010

• "Polynomial Identification of Substitutable Context-Free Languages", Alexander
Clark, Rémi Eyraud, Journal of Machine Learning Research, 2007

• "LARS: a Learning Algorithm for Rewriting Systems", Rémi Eyraud, Colin de la
Higuera, Jean-Christophe Janodet, Machine Learning Journal, 2007

Peer-Reviewed International Conferences

• "Learning with Partially Ordered Representations", Jane Chandlee, Rémi Eyraud,
Jeffrey Heinz, Adam Jardine, and Jonathan Rawski, proceedings of the sixteenth
Mathematics of Languages, ACL, 2019

• "Explaining Black Boxes on Sequential Data using Weighted Automata",
Stéphane Ayache, Rémi Eyraud, and Noé Goudian, proceedings of the 14th In-
ternational Conference on Grammatical Inference, PMLR, vol. 88, to appear,
2018

• "Sp2Learn: A Toolbox for the spectral learning of weighted automata", Denis
Arrivault, Dominique Benielli, FranÃ§ois Denis and Rémi Eyraud, proceedings
of the 13th International Conference on Grammatical Inference, pages 3 to 17,
JMLR W&C, vol. 57, 2016

• "Output Strictly Local Functions", Jane Chandlee, Rémi Eyraud, Jeffrey Heinz,
proceedings of the 14th Meeting on the Mathematics of Language, pages 112 to
125, Association for Computational Linguistics, 2015

• "Very efficient learning of structured classes of subsequential functions from posi-
tive data", Adam Jardine, Jane Chandlee, Rémi Eyraud, Jeffrey Heinz , proceed-
ings of the 12th International Conference on Grammatical Inference, pages 94 to
108, JMLR W&C, vol. 34, 2014

173

• "Learning Substitutable Binary Plane Graph Grammars", Rémi Eyraud, Jean-
Christophe Janodet, Tim Oates, proceedings of the 11th International Conference
on Grammatical Inference, pages 114 to 128, JMLR W&C, vol. 21, 2012

• "A Polynomial Algorithm for the Inference of Context-Free Languages", Alexan-
der Clark, Rémi Eyraud, Amaury Habrard, proceedings of the 9th International
Colloquium on Grammatical Inference, pages 29 to 42, LNAI 5278, Springer, 2008

• "Learning Auxiliary Fronting with Grammatical Inference", Alexander Clark,
Rémi Eyraud, proceedings of the 10th Conference on Computational Natural
Language Learning, pages 125 to 132, 2006

• "Identification in the Limit of Substitutable Context-Free Languages", Alexan-
der Clark, Rémi Eyraud, proceedings of the 16ith International Conference on
Algorithmic Learning Theory, pages 283 to 296, LNAI 3734, Springer, 2005

• "Representing Languages by Learnable Rewriting Systems", Rémi Eyraud, Colin
de la Higuera, Jean-Christophe Janodet, proceedings of the 7th International
Colloquium on Grammatical Inference, pages 139 to 150, LNAI 3264, Springer,
2004

Short papers, posters, workshops

• "Scikit-SpLearn: A Toolbox for the spectral learning of weighted automata com-
patible with scikit-learn", Denis Arrivault, Dominique Benielli, FranÃ§ois Denis
and Rémi Eyraud, proceedings of the Conference francophone en Apprentissage
(French Machine Learning Conference), 2017

• "Results of the Sequence PredIction ChallengE (SPiCe): a Competition on Learn-
ing the Next Symbol in a Sequence ", Borja Balle, Rémi Eyraud, Franco M. Luque,
Ariadna Quattoni, Sicco Verwer, proceedings of the 11th International Conference
on Grammatical Inference, pages 243 to 248, JMLR proceedings, 2016

• "New Polynomial Bounds for the Identification in the Limit Paradigm using Gen-
erative Grammars", Rémi Eyraud, Jeffrey Heinz, ICALP Satellite Workshop on
Learning Theory and Complexity, 2013, Riga, Latvia.

• "Results of the PAutomaC Probabilistic Automaton Learning Competition ",
Sicco Verwer, Rémi Eyraud, Colin de la Higuera, proceedings of the 11th Interna-
tional Conference on Grammatical Inference, pages 243 to 248, JMLR proceedings,
vol. 21, 2012.

• "A note on contextual binary feature grammars", Alexander Clark, Rémi Eyraud,
Amaury Habrard, EACL 2009 workshop on Computational Linguistic Aspects of
Grammatical Inference, Athens, Greece, 2009.

174

• "Spring School in Machine Learning. Teaching experiences", Cécile Capponi,
FranÃ§ois Denis, Rémi Eyraud, Amaury Habrard, Liva Ralaivola, PASCAL
Workshop: Teaching Machine Learning, Saint-Etienne, France, 2008.

• "Two methods to learn context-free languages", Rémi Eyraud, workshop
ML4NLP, Amsterdam, 2007.

• "Learning Auxiliary Fronting with Grammatical Inference", Alexander Clark,
Rémi Eyraud, proceedings of the 28th Annual Conference of the Cognitive Science
Society, pages 1127 to 1132, Vancouver, Canada, 2006.

• "Deux Techniques d’Apprentissage de Langages Hors-Contextes", Rémi Eyraud,
proceedings of the 8th Conférence francophone d’Apprentissage Automatique,
pages 186 and 187, Trégastel, France, 2006.

Career

September 2007 - present: Maitre de conférences (Junior Professor - tenure),
Aix-Marseille University, LIS UMR CNRS 7020, France

March 2018: Invited lecturer at the Stony Brook University, New York, USA

July 2014 - December 2014: Invited researcher at the Delaware University, USA

July 2012 - December 2013: Sabbatical founded by the CNRS; Invited researcher
at the University of Maryland, Baltimore County, USA

January 2007 - September 2007: non-permanent researcher at the University of
Amsterdam, The Netherlands

September 2006 - January 2007: non-permanent full-time lecturer (ATER) at
University of Saint-Etienne, France

September 2003 - August 2006: Ministry of Research founded Ph.D program with
teaching duties (Allocataire-Moniteur)

Research Activities

Principal collaborations

• Alexander Clark, King’s College, London, UK (7 co-authored papers, long visit)

175

• Jeffrey Heinz, University of Delaware, USA (5 co-authored papers, long visits,
co-organised events)

• Colin de la Higuera, Nantes University, France (4 co-authored papers, co-organised
events)

• Jean-Christophe Janodet, Evry University, France (4 co-authored papers)

• Sicco Verwer, Delft University, The Netherlands (3 co-authored papers, co-
organised international challenges)

• Tim Oates, University of Maryland, USA (2 co-authored papers, co-organised
event)

• Jane Chandlee, Haverford College, USA (3 co-authored papers, on-going work)

• FranÃ§ois Denis, Aix-Marseille University, France (2 co-authored papers, ongoing
project)

• Amaury Habrard, Saint-Etienne University, France (2 co-authored papers)

• Borja Balle, Amazon Research, UK, (1 co-authored paper, co-organised events)

• Ryo Yoshinaka, Kyoto University, Japan (1 co-authored paper, short visits)

Invited talks

• Invited speaker at the ACL workshop on Deep Learning and Formal Languages:
Building Bridges, Florence, Italy, 2019. Title: Distilling computational models
from Recurrent Neural Networks.

• Invited speaker at the Journées annuelles de Vérification, GdR IM, Grenoble,
2018. Title: Spectral Learning of Weighted Automata, from theory to a toolbox.

• Invited speaker at the Linguistic departement of the Stony Brook University, USA,
2018. Title: Recent advances in Grammatical Inference.

• Invited speaker at the ELCWorkshop on Learning Theory and Complexity, Kyoto,
2014. Title: Efficiency in the identification in the limit paradigm

• Invited seminar at the Computer and Information Science department of the Uni-
versity of Delaware, 2013. Title: Recent advances in grammatical inference of
non-regular languages

• Invited seminar at the Computer Science department of the University of Mary-
land, Baltimore County, 2012. Title: Learning context-free grammars

176

Editing & Reviewing

• Co-editor of a special issue on grammar learning for Fundamenta Informaticae,
2016

• Member of the program committee of the international conferences EMNLP-
CoNLL’07, ICGI’08, ICGI’12, ICGI’14, ICGI’16, ICGI’18

• Reviewer for the Machine Learning Journal (2014, 2015), Theoretical Computer
Science (2013, 2014, 2015, 2016), Journal of Machine Learning Research (2010,
2012, 2015), Information Processing Letters (2007), Advances in Complex Systems
(2006)

• Reviewer for the international conferences ECML’05, ECML’10, ICML’15,
NIPS’16, ICLR’18

• Reviewer for the francophone conference CAp’05, CAp’06, CAp’16, CAp’18,
CAp’19

Tutoring

• PhD

– Member of the PhD proposal and defense committees of Adam Jardine (Uni-
versity of Delaware, USA), 2013-2016

– Co-tutoring with Tim Oates of John Clemens (University of Maryland, Bal-
timore County, USA), 2012-2015

• MSc.

– Final internship and thesis of a MSc student. Subject: Inside the black-box:
extracting WA from RNN, 2018

– Last year project of a MSc. Student. Subject: Automatic detection of
typewriter model (in collaboration with French national Forensic team), 2017

– Final internship of an applied MSc. student. Subject: Image classification
via graph features, 2016

– Last year project of 4 applied MSc. students. Subject: Image indexation by
content, 2011

– Last year project of 4 applied MSc. students. Subject: Development of a
Firefox plug-in for film recommendation (allocine.fr), 2010

– First year thesis of a MSc. student. Subject: learning formal languages:
theory and practice, 2009

177

– Final internship and thesis of a MSc. student. Subject: statistical grammat-
ical inference: from theory to implementation, 2008

– First year project of 3 students. Subject: Implementation of a grammatical
inference algorithm, 2008

– First year thesis of a student. Subject: Learning Languages defined with the
use of String Rewriting Systems, 2006

– First year thesis of a student. Subject: Implementation of a learning algo-
rithm: LARS, 2005

• Undergraduate. Two to three months internships of third year students. Sub-
jects: Automatic Cancer detection from blood samples & Development of a tool-
box for spectral learning & Image classification via graph feature extraction &
Machine Learning: teaching via examples, 2014, 2015, 2018, 2019

Past projects

• ANRDECODA, 2010-2013, Speech Analytics in recorded call-center conversations

• ANR LAMPADA, 2009-2014, Learning Algorithms, Models and sPArse represen-
tations for structured DAta

• ANR SEQUOIA, 2009-2012, Probabilistic syntactic analysis with large coverage
of French.

• ANR MARMOTA, 2005-2008, MAchine learning for pRobabilistic MOdels Tree
lAnguages

• Member of the European networks of excellence PASCAL: Pattern Analysis, Sta-
tistical modelling and ComputAtional Learning (2003-2007) and PASCAL2 (2008-
2013)

Software

Implementation of 2 toolboxes for spectral learning, Sp2Learn and Scikit-SpLearn, dur-
ing a 1 year LabEx Archimède project (both in production), Free BSD licensed

Teaching

This teaching was done during a 3 years formation (monitorat) between 2003
and 2006, then during a 6 month full-time lecturer contract at the university

178

Jean-Monnet (2006) and finally during my current position (≈ 220 hours per year).
2nd year MSc. Computer Science XML* (2 years)

Classification, Learning, Decision (3 years)
Data Mining* (4 years)
Research Methodology*
Machine Learning* (3 years)

1st year MSc. Computer Science Theoretical Computer Science*
Introduction to Data Science*
Data Science

3rd year License Computer Science Algebraic Languages (2 years)
Data Bases (10 years)
Compilation (6 years)
Translation & Semantic (3 years)
Advanced Algorithmic (3 years)
Introduction to Machine Learning*

2nd year License Computer Science Rational Languages* (2 years)
2nd year License Physics Imperative Programming* (2 years)
1st year License Computer Science Functional Programming: Caml (3 years)

Introduction to Algorithms
Programming in C (2 years)

Note: In charge of the courses "Advanced Algorithmic", "Algebraic Languages", "XML:
principles and tools", "Programming in C", "Data mining", "Compilation", "Data
Bases", "Translation & Semantic", "Classification, Learning, Decision", "Data Sci-
ence", "Introduction to Machine Learning, "Introduction to data science", and "Theo-
retical Computer Science".
All courses correspond roughly to 60-70 hours, except those noted with a star, most of
which are half unit of about 30 hours.

A 4 days professional formation titled "Machine Learning: from Bases to Deep Learn-
ing" was given at Leroy Merlin Headquater in April 2018, in the context of CNRS
Formation Entreprise.

Collective Responsibilities

• Co-chair of the LearnAut 2018 workshop at the Federated Logic Conference (FloC
2018), Oxford, UK, 2018

• Co-chair of the LearnAut workshop at the Logic In Computer Science (LICS 2017)
conference, Reykjavik, Iceland, 2017

• Co-organiser of the SPiCe on-line competition about learning the next symbol in

179

sequences, 2016

• Co-organiser of the PAutomaC on-line competition about learning probabilistic
finite state machines, 2012

• In charge of the Master program in computer science "Advanced Data Bases"
2009-2011

• In charge of the Master program in computer science "Reliability and Security in
Computer Science" 2010-2012

• Head of the organisation committee and member of the scientific committee of
the PASCAL2 Bootcamp 2010, Marseilles, France

• Elected at the council of the UFR (' French faculty) Mathematics - Computer
Science - Mechanics of the University of Provence (2008-2012). Member of the
research and pedagogic council of this UFR.

• Elected at the executive committee of the national association for computer sci-
ence SPECIF, 2009-2011

• Member of the organisation committee of the first French summer school on Ma-
chine Learning, EPIT 2008, in charge of communication

• Member of the organisation committee of the SPECIF congress 2006 on Ph. D
cursus, Saint-Etienne

• Member of the organisation committee of the grammatical inference workshop
2006, Saint-Etienne

• Elected at the council of the doctoral school of Saint-Etienne, 2002-2007

• President of the Association Stéphanoise des jEunes Chercheurs, 2003-2004 Vice-
president of the Association Stéphanoise des jEunes Chercheurs, 2004-2005

• Member of the executive committee of the Confédération des Jeunes Chercheurs,
2005-2007

Science popularisation

• Member of the organization committee of the Treize Minutes Marseille, a science
popularization event, 2014, 2015, 2016, 2017, 2018

• Co-creator and animator of the network Communauté Française des Docteurs in
Marseilles, 2015

180

• Animation of a debate ("Causerie") at the Fêtes de la science 2015, Villa mediter-
ranée, Marseilles

• Talk titled "Computer science: education, jobs and dangers" at the French high
school La Condamine of Quito (Ecuador), January 2007

• Animation of a debate with high school students, titled "To talk and to discuss
with a computer", during the Vogue du Net organized by the town of Saint-Etienne
in may 2006

• Animation of a debate, "the new dangers of internet", at the occasion of the
Science Party 2006, at La Rotonde

Mentoring

Given the research path followed during these years, it was hard to find funding: no
grant proposal has been accepted despite months passed writing them down (for the
past 5 years: 5 ANR projects, 4 of which at the second round; 2 CNRS PEPS; a IUF
project; 1 AMIdex Pépinière; 3 Archimède Development team - 1 accepted for officially
4 months; 2 GdR ISIS). Usual feedbacks are that the proposed research is of interest
but is too risky and/or suffer from a potential lack of impact.

If one adds to this the statistical machine learning nature of the QARMA team, the
lack of supervision of PhD in Marseilles is easily explainable. This has two immediate
consequences: to slow down the pace of this research and to require more personal
investment to achieve the results presented in this HDR.

Nevertheless, it is worth noticing that an important amount of tutoring has been
realized. First, 10 graduate/master students have been supervised during the past
ten years (details are given in the joined Curriculum Vitae). This includes Research
internships of 3 last year Master students. Then, several works have been realized and
published with the participation of PhD candidates from my collaborators’ team. This
implied deep exchanges and important advising.

Finally, two PhD mentoring were officially done. First, at the University of Mary-
land, Baltimore County (UMBC), I co-supervised John Clemens with Tim Oates when
he was a PhD student. We worked on the idea to extract graphs from images, with the
final goal of learning Plane Graph Grammars from these graphs. John being a part time
student at that time, we did not achieve that goal, but instead used frequent subgraphs
counting to use classical SML algorithms. This allowed John to write his first research
paper and to validate this way his portfolio in order to become a PhD candidate1. As
I had to leave UMBC and as John was getting interested with more mainstream ML,
the tutoring ended here.

The second one happened at the Delaware University, within the team of Jeffrey
Heinz. After an unofficial co-mentoring of Jane Chandlee during her last PhD years,
I closely co-supervised Adam Jardine when he was a PhD candidate. As already de-
scribed, papers were published together. More importantly, frequent exchanges hap-
pened and it is unlikely to be a lack of humility to say that I actively participated
to the successes of the works he authored alone. This mentoring was made official by
the participation to his PhD proposal and his PhD defense committees. Now with a
tenure-track at the linguistic department of the Rutgers University, the interaction is
continuing and new collaborating works are about to be published.

1This - unpublished - work can be found at http://pageperso.lis-lab.fr/~remi.eyraud/
john-portfolio.pdf)

http://pageperso.lis-lab.fr/~remi.eyraud/john-portfolio.pdf
http://pageperso.lis-lab.fr/~remi.eyraud/john-portfolio.pdf

Main Acronyms and Notations
Index

GI Grammatical Inference 4
SML Statistical Machine Learning 5
FSA Finite State Automaton 6
IIL Identification In the Limit 19
IPTD Identification in Polynomial Time and Data 25
SCS Structurally Complete Set 27
IPTscD Identification in Polynomial Time and Structurally Complete Data 28
IPTtD Identification in Polynomial Time and Thick Data 29
CFG Context-Free Grammars 41
CBFG Contextual Binary Feature Grammars 42
Sub(u) Set of substrings of u 43
Con(w) Con(w) = {(l, r)|∃u ∈ Σ+ : lur = w} 43
CL(u) CL(u) = {(l, r) ∈ Σ∗ × Σ∗|lur ∈ L} 43
u ≡L v u ≡L v iff CL(u) = CL(v) 43
CNF Chomsky Normal Form 44
FCP Finite Context Property 55
FKP Finite Kernel Property 57
PGG Plane Graph Grammars 88
PGS Plane Graph Systems 89
SOSFIA Structured Onward Subsequential Inference Algorithm 125
u−1·w = v u−1 · w = v iff w = uv 126
pref(w) pref(w) = {u ∈ Σ∗ | (∃v)[uv = w]} 126
lcp(S) lcp(S) = w ∈ sh_pref(S) s.t. ∀v ∈ sh_pref(S) : |v| ≤ |w| 126
SFST Subsequential Finite-State Transducers 126
DSFST Delimited Subsequential Finite-State Transducers 127
SIPTD Strong Identification in Polynomial Time and Data 132
ISL Input Strictly Local (functions) 136
OSL Output Strictly Local (functions) 143
IOSL Input Output Strictly Local (functions) 143
suff(w) suff(w) = {s ∈ Σ∗ | (∃p ∈ Σ∗)[w = ps]} 143
ISLFLA Input Strictly Local Functions Inference Algorithm 146
fp(w) fp(w) = lcp{wΣ∗} 146
OSLFIA Output Strictly Local Functions Inference Algorithm 147
IOSLFIA Input Output Strictly Local Functions Inference Algorithm 152

Grammatical Inference : Learning Computational Models from
Various Types of Structured Data

Rémi Eyraud

Abstract:
Computational models, such as the ones of the Chomsky hierarchy, are at the core
of the Computer Science theory and, at the same time, are massively used in real-life
applications. The field of Grammatical Inference aims at studying the learnability of
such models, mainly by providing learning algorithms, investigating their properties,
and characterizing the learned classes. This usually raises questions that questioned
the notion of learning itself, providing a deep insight into our understanding of machine
learning.
In this manuscript, we focus on three developments of this field. In a first part, we
discuss different formalizations of the notion of learning and their interest in the context
of computational models. This allow us to formulate new paradigms and to refute the
usability of well-known ones.
The second part regroups several published works that share a common idea, known
under the name of distributional learning. The core of this approach is to observe in
the data the distribution of congruence classes and to infer a grammatical model that
captures the observed structures. We show the potential of this idea by providing first
an algorithm that provably learns from strings a class of rewriting models that contains
all regular languages and some context-free ones, and, second, a study of a specifically
designed graph grammar class for which a simple learning algorithm can be designed.
The last part of the document concentrates on learning string to string functions using
computational models known under the name of transducers. Two different works are
detailed, both initiated by linguistic motivations. In the first one, we focus on learning
efficiently functions whose domain is known a priori. In the second one, we restrict
ourselves to classes of transductions that benefit from a locality property. In both
cases, we provide learning algorithms together with a theoretical learning study.

Keywords: Grammatical Inference, Language Theory, Machine Learning, Learning
Theory, Distributional Learning, Graph Grammars, Transducers.

	I Introductions
	On Grammatical Inference and Machine Learning
	Machine learning and human learning
	What is called grammatical inference
	Approximation versus Identification
	Overview of this document
	Bibliography

	On the Formalization of Learning
	Introduction
	On learning paradigms
	Preliminary definitions

	PAC learning and other learning paradigms
	PAC paradigm
	Active Learning
	Other learning paradigms

	The limits of Gold's paradigm
	The importance of efficiency in learning
	Identification in the limit
	Polynomial time
	Identification of a language and the size of a target representation

	First refinements
	Mind changes and implicit errors of prediction
	Characteristic Sample

	Recent refinements
	Structurally complete set
	Thickness
	Comparison of the two refinements

	Conclusion
	Bibliography

	II Distributional Learning
	On Learning from Strings
	Introduction
	Basic Definitions and Notations
	Contextual Binary Feature Grammars (CBFG)
	Preliminary Results about Context Inclusion
	Contextual Binary Feature Grammars
	A Parsing Example

	Learning Algorithm
	Building CBFGs from Sets of Strings and Contexts
	Monotonicity Lemmas
	Fiducial Feature Sets and Finite Context Property
	Kernel and Finite Kernel Property
	Learning Algorithm
	Identification in the limit result
	Examples

	Practical Behavior of the Algorithm
	Generation of Target Context-free Grammars
	Experimental Setup
	Results and Discussion

	Expressiveness of CBFG
	Exact CBFGs and the Chomsky Hierarchy
	Inexact CBFGs

	Discussion and Conclusion
	Grammatical Inference
	Linguistics
	Following works

	Bibliography

	On Learning from Graphs
	Introduction
	On Plane Graphs
	Concatenation
	Plane isomorphism

	The Grammars for Plane Graph Languages
	Applying a lexical rule
	Applying a production
	Representable languages
	Plane Graph Grammars and Related Formalism's

	Properties of Plane Graph Grammars
	Context-freeness property
	A Parsing Algorithm

	Learning substitutable plane graph languages
	Substitutable plane graph languages
	The Learner
	Learning result

	Discussion
	Bibliography

	III Functional Learning
	On Learning with a Known Domain
	Introduction
	Preliminaries
	Representations of Subsequential Functions
	Traditional Subsequential Transducers
	Delimited Subsequential Transducers
	Onward Transducers

	Deriving an Onward DSFST
	Learning Paradigm
	Target Classes
	Learning Algorithm
	Learning Result
	Demonstrations
	Input Strictly Local Functions
	Non-ISL Phonological Processes
	Morphological Parsing

	Conclusion
	Bibliography

	On Learning with Locality Constraints
	Introduction
	Preliminaries
	Input and Output Strictly Local functions
	Input Strictly Local functions
	Output Strictly Local functions

	Input-Output Strictly Local functions
	Definition
	Automata Characterization
	Relations among classes

	Learning IOSL functions
	The Learning Algorithm
	Theoretical Results

	Conclusion and future works
	Bibliography

	IV Conclusion
	Conclusion
	On congruences
	On representation hierarchies
	To be exhaustive
	Some personal remarks
	Bibliography

	V Annexes
	Curriculum Vitae
	Mentoring
	Brief Index

