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Abstract Two different paths exist when one is interested in validating an idea for
a learning algorithm. On the one hand, the practical approach consists in using the
available data to test the quality of the learning algorithm (for instance the widely
used cross-validation technique). On the other hand, a theoretical approach is pos-
sible by using a learning paradigm, which is an attempt toformalize what learning
means. These models provide a framework to study the behavior of a learning al-
gorithm and allows to formally show the soundness of an approach. The mainly
used learning paradigm in Grammatical Inference is the one of Identification in the
limit. But its first definition is not restrictive enough in the sense that no efficiency
bound is required. This chapter surveys the different refinements that have been de-
veloped and studied. Main results for each formalisation are given and comparisons
are detailled.

1 Introduction

E. M. Gold [10] introduced in the sixties the notion of identification in the limit.
The principle is to consider that the algorithm is fed with an infinite sequence of
data corresponding to a target language. When a new element is given to the algo-
rithm, it outputs an hypothesis. The algorithm identifies the language in the limit
if for any possible sequence of data for this language, there exists a moment from
when the algorithm does not change its hypothesis, and this hypothesis is a correct
representation of the target language. When a whole class of languages is consid-
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ered, the algorithm identifies the class in the limit if it can identify all languages of
the class.

The fact that the convergence is required to hold whatever the sequence of data is
makes this paradigm be adversarial. This worst-case scenario principle strengthens
the value of any algorithmic idea that can yield to an identification in the limit result
for a class of languages.

However, Gold’s formulation can be of little help for practical purpose, when
one wants to study an learning idea with the aim to apply it to real-world data. This
is mainly due to the fact that no efficiency property is required and thus one can
assume infinite time and space. This is the reason why several refinements of Gold’s
model have been developed, adding polynomial bounds to the requirements of the
paradigm.

After a short section containing the needed definitions, Section 3 studies the lim-
itations of the initial identification in the limit definition. In Section 4 requirements
based on the running time of the studied algorithm are developed. Section ?? deals
with efficiency requirements depending on the iterative behaviour of the algorithm
while Section 6 is a bout a set driven refinement of Gold’s paradigm. Then, Sec-
tion ?? introduces two recent reformulation of the paradigm. Finally, Section 8
briefly discusses other paradigms.

2 Preliminary definitions

An alphabet X is a finite nonempty set of symbols called letters. A string w over X is
a finite sequence w = aja; . .. a, of letters. Let |w| denote the length of w. Given a set
of strings S, we denote || its cardinality and ||S|| its size, i.e. the sum of the length
of the strings it contains. In the following, letters will be indicated by a,b,c,...,
strings by u, v, ..., z, and the empty string by 4. Let X* be the set of all strings.

We assume a fixed but arbitrary total order < on the letters of X. As usual, we
extend < to X* by defining the hierarchical order [13], denoted by <, as follows:

[wi| < [wa| or
Ywi,wy € E*,Wl <wy iff ‘W1| = |W2| and Ju,vi,v, € X*,day,ap € X
s.t. wi = uavi,wy = uaxvy and a; < as.

< is a total strict order over X*, and if X = {a,b} and a < b, then A <a<1b<aa <
ab<1ba<1bb<aaa<...

We extend this order to non-empty finite sets of strings: S1 <15, iff ||S1]| < ||S2]|
or [|S1]| = ||S2]| and 3w € S such that Yw' € S5 either w' € S} or w<aw'.

By alanguage L over X we mean every subset L C X*. Many classes of languages
were investigated in the literature. In general, the definition of a class LL relies on a
class R of abstract machines, here called representations, that characterize all and
only the languages of L. The relationship is given by the naming function £ : R — L
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such that: (1) VR € R,.Z(R) € L and (2) VL € I, 3R € R such that £ (R) = L. Two
representations Ry and R, are equivalent iff Z(R)) = Z(Ra).

The size of a representation R, denoted by ||R||, is polynomially related to the
size of its encoding.

A lot of different classes of representations have been studied in the litterature
and it is behond the scope of this chapter to give an exhautive list of them. However,
we introduce the following definition, that is a generalisation of some of the well-
known classes of grammar. We will maily focus on the classes of representations
whose characterisation can be done in this context.

Definition 1 (Generative grammar). G =< X, N, P, [ > where X is the alphabet of
the language, N is a set of variables usually called non-terminals, P C (NUX)* x
(NUZX)* is the set of generative rules, / is the finite set of axioms, which are elements
of (ZUN)*.

A generatives rule (o, ) is usually denoted o — f3. It allows the rewritten of
elements of (X UN)* into elements of (X UN)*. Given y € (X UN)* we say that a
rule o — B applied to yif it exists 11,8 € (X UN)* such that y = nad. The result of
applying this rule on yis 8. We write y = 1138. =" is the reflexive and transitive
closure of =.

Definition 2 (Generated language). Let G =< X,N,P,I > be a generative gram-
mar. £(G)={weX*:Jaclsto=5w}

Example 1. The usual classes of the Chomsky hierarchy are classes of generative
grammars. Regular grammars correspond to the restriction P C N x ENU {1}, or
P C N x NZU{A} by symetry. The context-free grammars are the ones where P C
N x (£ UN)* while the context-sensitive grammars are the ones such that if o —
B € Pthen 3(y,0,n) € (ZUN)*, A€ N: o = §An and § = dyn. If no restriction is
imposed to the rules of the grammar, then the considered class is the one of recursive
grammars. All of these classes were formerly defined with a set of axioms reduced
to one element of N.

Example 2. String Rewriting Systems (SRS) [5] are generative devices where N = 0.
A Rule corresponds to an element of X* rewritten into an element of X* and the set
of axioms is made of elements of X*. The language representing by a SRS is the set
of strings that can be rewritten using the rules from an element of /.

Some classes of representation that have been studied in grammatical infer-
ence are not coverted by Definition 1. This is the case for instance of the Multi-
ple Context-Free Grammars and of the Paralel Context-Free Grammar. However, it
is easy to generalise the definition in order to cover these classes: for the sake of
simplicity we chose to consider this restrictive version.
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3 The limits of Gold’s paradigm

Introduce IIL, give general results (superfinite from text, all computably enu-
merable from informant)

We now detailled the formalisation of the identification in the limit paradigm.

A presentation P of a language L is an infinite sequence of data corresponding
to L. We note P[i] the i’* element of P and P; the set of the i’" first elements of P.
If the data contains only unstructured elements of L the presentation is called a text
of language L. A text T is a complete presentation of L iff for all w € L it exists
n € N such that T'[n] = w. If the data is made of couple (w,[), w € Z* such that / is
a boolean valued true if w € L and false otherwise, then the presentation is called
an informant. An informant [ is a complete presentation of L iff for all w € X* there
exists n € N such that /[n] = (w,). In the rest of the chapter, we will only consider
complete presentations.

Definition 3 (Identification in the limit [10]). A class L of languages is identifi-
able in the limit (IIL) from text [resp. from informant] if and only if there exists an
algorithm 2 such that for all language L € L, for all text T [resp. informant /] of L,

o there exists an index N such that Vn > N, A(T;,) = A(Ty) [resp. A(,) = A(Iy)]
o Z(AU(Ty) =L [resp. L(A(Iy) = L]

One of the main results in this paradigm is that no superfinite class of languages
can be identified in the limit from text. Despite what the name can evocate, a class
of languages is superfinite if it contains all finite languages and at least one infinite
language (the class contains thus an infinite number of languages). The proof relies
on the fact that given a presentation of an infinite language L, there does not exist
any index N from which a learner can distinguish the finite language made of the
strings seen so far and the infinite language: if it guesses the finite language it is
making an error; but if its hypothesis corresponds to L, the presentation seen so far
can also be the one of the finite language, which yields to an error if this language
is the target one.

On the other hand, any computably enumerable class of languages is identifiable
in the limit from informant. The learning algorithm is really naive: it enumerates the
elements of the class until finding the first one consistent with the strings seen so
far, that is to say the first language of the enumeration that accepts all positive ex-
ample (labelled true) and rejects all negative ones (labelled false). If it is the correct
hypothesis, the algorithm has converged. If not, then they will be a exemple later in
the informant that is in contradiction with the current hypothesis and will make the
algorithm to continue the enumeration to the next consistent language.

This second result, though of positive nature, is one of the main reason the iden-
tification in the limit paradigm was refined. Indeed, the briefly detailled learning
algorithm is clearly not tractable and thus is of little use. This first formalisation is
thus not enough restrictive to completely validate learning ideas.

ref to John Case chapter ?
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4 Polynomial time

make it a subsection of the former one?

Given the limitations of IIL shown in Section 3, designing requirements to add to
the pardigm is needed to strengthen the validity of learning idea. An intuitive way
to deal with that, is to add a constraint on the computation time of the algorithm.

Taking into account the overall running time seems to be tricky since it would
yield to consider only pathological presentations where the convergence happens
late. A recent paper from Thomas Zeugmann [21] would be a great interest to a
reader concerned by that standpoint.

A more consensual requirement is the update time efficiency. An algorithm is
update time efficient if it outputs a new hypothesis in a time polynomial in the size
of the data seen so far. This generate a new grammar, the amount of time used has
to be a polynomial in the sum of the length of the strings available at that point.

But, in a seminal paper [14], Leonard Pitt shows that this requirement is not
sufficient to prove the validity of a learning approach. Indeed, using a method now
known as Pitt’s trick, he proves that any algorithm that identify a class in the limit
can be transformed into an algorithm that keep the property of the previous and
that a polynomial update time. Unformally the proof relies on the fact that, given a
presentation P, if a learner converges to a correct hypothesis on the initial sequence
P,, a variant can delay the computation of any interesting hypothesis until having
seen P; such that the computation time of the initial learner on P, is polynomial
in ||Pj||. The variant algorithm has then an efficient update time and fullfils the
conditions of identification in the limit.

As a consequence, an algorithm might be able to efficiently output an hypothesis,
but if the convergence can only occur if a non-reasonable amount of data is provided,
the theoritecal result will not be usefull when real data are taken into account.

S Implicit errors of prediction and mind changes

Despite the problem described in the previous section, the requirement of a polyno-
mial update time is still desirable. Therefore the paradigm has to be enriched such
that delaying tricks are not possible.

Most additional requirements are based on the same method: theylink the be-
havior of the algorithm to the size of a target representation. Indeed, though the
identification of the target language is expected, the polynomiality cannot rely on
the language itself: non-trivial classes of languages often contain an infinite number
of infinite languages. In addition, this focuses the attention on the hypothesis space
of an algorithm, which is relevant form a machine learning standpoint'.

1 'We do not consider here that the class of possible hypothesis corresponds to the target class of
languages: we just emphasize the fact that choosing a target class of representations is likely to
have consequences on the hypothesis space of the algorithm.
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The first attempts to formalize this notion of convergence from a reasonable
amount of data rely on the number of mind changes [3, 1] or the number of implicit
prediction errors [14]. The first one requires that the number of times the current
hypothesis disagrees with the new data is bounded by a polynomial in the size of
the target representation. However, if the presentation is a text, a unwanted trick can
be used: the algorithm can output a large hypothesis, for instance X*, that will never
be in contradiction with the data. It can then wait to see an important number of
example before returning a pertinent hypothesis. This thus do not avoid Pitt’s trick
in this case.

The second one states that the number of time the current hypothesis is in con-
tradiction with the new example has to be polynomial in the size of the target repre-
sentation. More formally:

Definition 4 (Identification in Polynomial Number of Implicit Errors).

e Given a presentation P, an algorithm 2l makes an implicit error of prediction at
step n if 2(P,) is in contradiction with P[n].

e A class G of representations is polynomial-time identifiable in the limit in Pitt’s
sense if G admits a polynomial time learning algorithm 2( such that for any pre-
sentation of .Z(G) for G € G, A makes implicit errors of prediction at most
polynomial in ||Gk|| [14].

e A class G of representations is polynomial-time identifiable in the limit in Yoko-
mori’s sense if G admits a polynomial time learning algorithm 2( such that for
any presentation P of .Z(G) for G € G, for any natural number n, the number fo
implicit errors of prediction made by 2l on the n'” first examples is bounded by a
polynomial in m - ||G||, where m = max{|P[1],...,|P[n]|} [19].

Notice that Yokomori’s formulation is a relaxed version of the one of Pitt.

main results, comparison. Do we need to talk about conservatism, fairness,
etc?

But both of these formulations suffer from the same drawback: they are mainly
designed for incremental algorithms. Indeed, these paradigms give a lot of impor-
tance to the sequence of data, in particular as the parts of two sequences that contains
the same elements in a different order might not correspond to the same number of
implicit errors (or mind changes). This eventually yields to consider particularly
malevolent sequences of data. However, in most practical framework, for instance
in Natural Language Processing or Bio-Informatics, we are interested by algorithms
that work from a finite set of data.

6 Characteristic Sample

The most widely used definition of data efficiency relies on the notion of character-
istic sample, that is to say a set of data that ensures the correct convergence of the
algorithm as soon as it is present in the set of data seen by the algorithm. In this
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paradigm [7], it is required that the algorithm needs a characteristic sample whose
size? is polynomial in the size of the target representation.

This refinement diverges from the usual identification in the limit approach as
the iterative process in not any more the core of the paradigm. Indeed, the fact
that it relies on a characteristic sample allows a set-driven definition that we are
developping here3. We thus need first the two following definitions that concerns
non-iterative learners.

Definition 5. Let L be a class of languages represented by some class R of repre-
sentations.

1. A sample S for a language L € L is a finite set of data corresponding to L. A
positive sample for L is made only of elements of L. A positive and negative
sample for L is made of couples (w,!), where [ is a boolean such that / = TRUE
if w € L and | = FALSE otherwise. The size of a sample S is the sum of the size
of all its elements.

2. An (L,R)-learning algorithm 2( is a program that takes as input a sample for a
language L € I and outputs a representation from R.

Notice that these definitions do not specified whether the data are strings or struc-
tural data like trees, skeletons or graphs.

The underlying idea of the paradigm is that it is impossible to learn if the data
seen so far does not contain enough information about the target. This paradigm also
deals with the relevance of the class of representations, as the characteristic sample
is usually described using the target representation, different classes of representa-
tion for the same class of laguages might not obtain the same learning result.

We first need to define the following notion:

Definition 6 (Characteristic sample). Given a (L, R)-learning algorithm 2I, we say
that a sample CS is a characteristic sample of a language L € L if for all samples S
such that CS C S, 2 returns a representation R such that £ (R) = L.

The set-driven version of the paradigm can now be given:

Definition 7 (Set-driven identification in polynomial time and data [7]). A class
LL of languages is identifiable in polynomial time and data (IPTD) from a class R
of representations if and only if there exist an (L, R)-learning algorithm 2( and two
polynomials p() and ¢() such that:

1. Given a sample S for L € IL of size m, 2 returns a hypothesis H € R in &'(p(m))
time ;

2. For each representation R of size k of a language L € L, there exists a character-
istic sample of L of size at most &'(g(k)).

2 The size of a sample is the sum of the length of its elements: it has been shown [14] that its cardi-
nality is not a relevant feature when efficiency is considered, as it creates a risk of collusion.Remi:
collusion=Pitt’s trick? Is CS enough or do we need constistent to get rid of the trick? I think
it is, but we might need to say it

3 Notice that it can also be defined in an iterative way.
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Several reasons explain why we chose this unusual way to formalize identifi-
cation. First, the aim here is to formalize learning when a set of data is available,
which corresponds to the most common framework when real-world data is consid-
ered. This is the reason why, real iterative algorithms, that is to say algorithms that
only used their previous hypothesis and the new data to generate a new hypothesis,
though of great interest, are not of central in this chapter. However, notice that, an
algorithm defined within the paradigm of Definition 7 can easily be studied in the in-
cremental one: it suffices to define a new algorithm that for each new data launches
the first one on the set of data seen so far.

By forcing the algorithm to converge to a correct hypothesis whenever a charac-
teristic sample of reasonable size has been seen, this paradigm tackles the risk of
collusion by forbidding Pitt’s delaying trick. For a recent and detail discussion on
this problematics, see for instance [6].

main results, comparison with the previous ones

6.1 Limitations

The identification in polynomial time and data suffers from one main drawback: it
has been thought in the context of regular languages learning, and thus is not shaped
for more complex class of languages. Example 3 proves that context-free languages
cannot be learned under this criterion using context-free grammars. Indeed, the char-
acteristic sample has to contain the only string in the language, but the length of this
string is exponentially greater than the grammar.

Example 3. Let n be a fixed natural number and let G| be the context-free grammar
whose production rules are N; — N+ Nit1, for 0 <i <n, and N, — a. The language
of this grammar is the singleton L(G;) = {a*'}.

The reason why this example is not learnable does not come from the hardness of
the language: it is made of only on string. But the use of any class of representation
that contains this example is not identifiable in the limit. It seems that in this case
the problem comes from the definition of what learning means, that is to say from
the learning criterion, rather than the properties of the language. Hence, from an
information theory point of view, it is obviously interesting to have an algorithm
that is able to find a model explaining the data it is fed with that is exponentially
smaller than these data. This is actually a desired property in many fields of machine
learning (see [9] for instance).

The trouble here comes thus from the learning paradigm.

7 Thickness and Structurally complete

definitions of the formalisms, comparisons, limitations.
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7.1 Thickness

In a recent paper [20], Ryo Yoshinaka introduced the identification from an charac-
teristic sample whose size is a polynomial in the size of the target grammar and of
a measure called the thickness of the grammar.

Definition 8 (Thickness). Let G = (X, N, P,I) be a generative grammar. The thick-
ness of G is ¢ = max{|@ ()| : 3B, ot — B € P} where o(a) =min{w € Z* : a =,

w}.

This definition is an extended version of the one that was first introduced for context-
free grammars in the context of model complexity [18]. Notice that it has nothing to
do with the usual notion of thickness in learning theory.

Definition 9 (Identification with Thickness Polynomiality [20]). A class L of lan-
guages is identifiable in polynomial time and thick data (IPTtD) for a class R of
representations if and only if there exists an algorithm 2{ and two polynomials p()
and ¢() such that:

1. Given a sample S for L € L of size m, 2 returns a hypothesis H € R in &(p(m))
time ;

2. For each representation R of a language L € L of size k, there exists a character-
istic sample CS whose size is in O(q(k, Tg)).

7.2 Structurally complete set

We first introduced the following definition:

Definition 10 (Structually Complete Set). Given a generative grammar G, a struc-
turally complete set (SCS) for G is a set of data SC such that for each produc-
tion o — f3, there exists an element x € SC, an element ¥ € I and two elements
n,T € (ZUN)* such that y =* nat = N1 =" x. The smallest structurally com-
plete set SC for a grammar G is the sample such that for all SCS SC’ for G, SC<1SC'.

A notion of structurally complete sample has already been defined in the context
of regular language learning [8]. However, this former definition relied on a par-
ticular representation, namely the finite state automaton, and it considered only the
case of positive and negative examples. Definition 10 is more general as it does not
depend on a particular representation and does not consider a particular type of data.

Definition 11 (Polynomial Structuraly Complete Identification). A class I of
languages is identifiable in polynomial time and structurally complete data (ITscD)
for a class R of representations if and only if there exist an algorithm 2 and two
polynomials p() and ¢() such that:
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1. Given a sample S for L € L of size m, 2 returns a hypothesis H € R in &'(p(m))
time ;

2. For each representation R of a language L € L, there exists a characteristic sam-
ple CS whose size is in &(g(k)), where k is the size of the smallest structurally
complete set for R.

Notice that in the case where negative data is also available, the size of the char-
acteristic sample has to be polynomial in the size of a SCS which contains only
positive examples. This implies that the amount of negative evidence has to be poly-
nomialy related to the one of the positive evidence.

7.2.1 Comparison with IPTD

Consider the class of languages .2} = U,en {ai :0 < i< 2"}, This class is identi-
fiable in polynomial time and data from positive data only using the class of repre-
sentations 4 = U,y ({a},{S,A},{S — A% /A — a|A},{S}). Indeed, given a tar-
get language, the simple algorithm that returns the only grammar consistent with a
sample admit the characterisric sample {a*'} which is linear in the size of the tar-
get. However, the smallest structurally complete set of any target grammar is {1,a}
which is of size 2. As the size of the smallest SCS is constant and the class of lan-
guages infinite, .7 is not identifiable in polynomial time and structurally complete
data.

On the other hand, let consider the class of languages .25 = U,,en {azn} and its
class of representations % = Upen ({a}, Ny, Pr, {No}), with P, = {N,, — a} Up<i<y
{N; — Ni+1N;11}. Given n, the characteristic sample is {a*'} which is also the
smallest structurally complete set for the target grammar. However, this sample is
not polynomial in the size of the target grammar. Therfore % is identifiable in the
limit in polynomial time and structurally complete data using % but not in polyno-
mial time and data.

This show that these two paradigms are thus non-comparable. In the next section
we show that the main language classes studied under the former paradigm are iden-
tifiable in polynomial time and structurally complete data. Moreover, some classes
that were not learnable in de la Higuera sense are shown to be identifiable in the
new paradigm.

7.3 Comparison of the two refinements

Ryo’s counter-example shows that a class can be IPTtD but not IPTscD. Is the
converse true?
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8 Other learning paradigms in GI

PAC: why it is not adapted to GI, main results in restrictive version. The most
used paradigm in machine learning is the Probably Approximately Correct (PAC)
criterium [16] and its refinements [12, 15]. However, these paradigms are usually
considered as not adapted to formal languages learning, as even very simple and
well characterized classes of languages are not PAC-learnable [2].

Several theoretical reasons explain this inadequacy, one of the main ones being
that the VC-dimension of even the simplest models of language representations,
namely the finite state automata, is not bounded [11] which make them not learnable
in the PAC sense [4]. This is closely related to the fact that the learning principle
of empirical risk minimization [17], inherent in most approaches studied under the
PAC framework, is of little use when formal languages are considered. Indeed, the
number of representations consistent to a given set of data of a target language, that
is to say representations that correctly explain all the data, is often non finite. It is
then useless to reduce the hypothesis space to the one that minimize the error on a
given set of data.

Another reason is that a representation of a formal language is not only a classi-
fier, that is to say a device that defines what is in the language and what is not, but it
gives also structural information about the elements of the language.

Another particularity of language learning is that a lot of algorithms use only
positive examples of a target concept, while the usual machine learning framework
relies on labelled data. In addition, the PAC paradigm is particularly pertinent in the
case of statistical models where the probability of making a mistake can be evaluated
using the hypothesis, but it is of less interest for non stochastic model learning.

On the other hand, the PAC paradigm does not suffer from the main drawback
of identification in the limit that it is of being asymptotic: no guarantee is provided
about the quality of the hypothesis before the convergence happens. But this draw-
back seems to be inherent of the kind of representations for the learning targets
considered: even if two generative grammars have 99.9% of their rules in common,
the languages of these two grammars can be as far apart as one wishes. This prob-
lem is inherent to the nature of formal languages and their representations and this
"Gestalt-like" property is unavoidable in the formalization of learning: the whole
grammar is more than the sum of its rules. In our view, this mainly justifies the use
of identification in the limit in the context of grammar learning.

Zeugmann’s stochastic finite learning? others?
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