Explainable inference on sequential data with Memory Augmented Neural Network

BENAZHA Hamed

November 16, 2021

(ロ) (御) (君) (君) (君) 君 のぬの

[Introduction](#page-1-0)

KOKK@KKEKKEK E 1990

Introduction

- ▶ Memory Augmented Neural Network were originally used to solves problem that classical RNN cannot solves (reversing, sorting...)
- \blacktriangleright Like a computer, it uses external memory and is Turing Complete
- It's also capable of basic reasoning (e.g. with the babi dataset)
- \blacktriangleright The external memory provide some valuable insight on the decision process of the network

[Different type of MANN](#page-3-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

TARDIS

- \triangleright Bengio et al [\[3\]](#page-26-0) proposed an architecture to help with long-term dependencies in LSTM
- \blacktriangleright The memory here serves as a buffer (and also as a shortcut) for hidden states
- \triangleright The idea is comparable to Residual Neural Network, but with residual connections through time

Dependencies among the input tokens:

KORK EXTERNE PROVIDE

Hopfield Networks

- \triangleright Ramsauer et al [\[5\]](#page-27-0) proposed a generalization of the attention
- \triangleright This model allow standard (and recurrent) neural networks to be augmented with an associative memory
- \blacktriangleright The associative recall is based on Modern Hopfield Network
- \blacktriangleright The memory is static (i.e. not interactive), learned during training and doesn't change during inference

KELK KØLK VELKEN EL 1990

Neural Turing Machine and derivative

- \triangleright This model was proposed Graves et al $[1]$ and is based on Von Neumann model
- \triangleright An extension was also proposed by Graves et al [\[2\]](#page-26-2)
- \blacktriangleright The memory is dynamic
- \triangleright We interact (reading, writing) in a differentiable manner with the memory at each time-step

KORK EXTERNE PROVIDE

[Differentiable Neural Computer](#page-7-0)

KOKK@KKEKKEK E 1990

Neural Turing Machine

- \triangleright Graves et al [\[1\]](#page-26-1) proposed a MANN architecture
- \blacktriangleright The controller can now read and write in a differentiable manner by using attention mechanism
- \blacktriangleright To do that, the controller emits a read and a write attention vector

Content Based Addressing

- \blacktriangleright At each time-step, the controller emit a key
- \blacktriangleright The key is compared to each location in the memory according to a similarity measure
- \triangleright A softmax is applied to the similarity score to obtain the attention vector

Reading and writing

 \triangleright We can write the read vector as :

$$
r_t = \sum_{i=1}^N w_t(i) M_t(i)
$$

$$
\text{ where } \sum_{i}^{N} w_{t}(i) = 1, \forall i : 0 \leq w_{t}(i) \leq 1
$$
\n
$$
\begin{bmatrix}\n-0.5 & 0.01 & 3.1 \\
0.2 & 0.6 & 1.2 \\
0 & 0 & 0 \\
-0.1 & -0.05 & 0\n\end{bmatrix}^{\top} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix}\n-0.5 & 0.2 & 0 & -0.1 \\
0.01 & 0.6 & 0 & -0.05 \\
3.1 & 1.2 & 0 & 0\n\end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.2 \\ 0.6 \\ 1.2 \end{bmatrix}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Reading and writing

 \blacktriangleright The writing operation is inspired by the input and forget gates in LSTM

$$
\tilde{\mathbf{M}}_t(i) = \mathbf{M}_{t-1}(i)[\mathbf{1} - w_t(i)\mathbf{e}_t] \text{ ; erase }
$$

$$
\mathbf{M}_t(i) = \tilde{\mathbf{M}}_t(i) + w_t(i)\mathbf{a}_t \text{ ; add }
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Differentiable Neural Computer

- \triangleright An extension to the NTM was proposed by Graves et al [\[2\]](#page-26-2)
- \blacktriangleright The controller have now new ways to interact with the memory
- \blacktriangleright It can now also handle full memory issues

Illustration of the DNC architecture

KORK EXTERNE PROVIDE

Temporal memory linkage

- \triangleright The controller can now read the memory cells sequentially in the order they were written
- This matrix $L \in R^{N \times N}$ tracks the order in which location have been written
- \blacktriangleright Example : If the memory location 4 was written after the location 2. Then the location 1 was written after location 4

$$
L_t = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Dynamic Memory Allocation

- \blacktriangleright The DMA can free unused cell
- \blacktriangleright The objective of the dynamic memory allocation is to rewrite the memory content
- \blacktriangleright The allocation vector a_t indicate to what degree, each memory location is allocable
- For example if $a_t = [0.8, 0.4, 0.1, 0]$ then the first location is more allocable
- If $a_t = 0$ then the DNC is out of allocable memory location

Reading vector

- \triangleright To compute the reading vector, the controller emits a reading mode vector $\pi_t \in \mathbb{R}^3$ where $\sum \pi_t(i) = 1$ and $0 \leq \pi_t(i) \leq 1$
- \blacktriangleright the read vector is the sum of the temporal interaction mode and the content retrieval modes

$$
r = \pi_t(1)b_t + \pi_t(2)c_t + \pi_t(3)f_t
$$

KORKAR KERKER SAGA

 \blacktriangleright where b, c, f are respectively the backward (temporal), content and forward(temporal)

Write vector

- As seen earlier, the allocation vector a_t indicate to what degree, each memory location is allocable
- \blacktriangleright The controller also emits two scalars
- ▶ A scalar $g_t^w \in [0,1]$ that governs writing intensity $(g_t^w = 0)$ imply no writing)
- A scalar $g_t^a \in [0,1]$ that governs the interpolation between a_t and c_t^w

$$
w_t = g_t^w \left[g_t^a a_t + (1 - g_t^a)c_t^w\right]
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Experiments
Random Training Graph

London Underground

Underground Input:

(OxfordCircus, TottenhamCtRd, Central) (TottenhamCtRd, OxfordCircus, Central) (BakerSt, Marylebone, Circle) (BakerSt, Marylebone, Bakerloo) (BakerSt, OxfordCircus, Bakerloo)

(LeicesterSq, CharingCross, Northern) (TottenhamCtRd, LeicesterSq, Northern) (OxfordCircus, PiccadillyCircus, Bakerloo) (OxfordCircus, NottingHillGate, Central) (OxfordCircus, Euston, Victoria)

Traversal Question: (BondSt, , Central), (_, _, Circle), (_, _, Circle), $\left(____\$ Circle), $\left(____\$ Circle), $($, Jubilee), $($, Jubilee),

Answer:

(BondSt, NottingHillGate, Central) (NottingHillGate, GloucesterRd, Circle)

(Westminster, GreenPark, Jubilee) (GreenPark, BondSt, Jubilee)

Shortest Path Question: (Moorgate, PiccadillyCircus,)

Answer:

(Moorgate, Bank, Northern) (Bank, Holborn, Central) (Holborn, LeicesterSq, Piccadilly) (LeicesterSq, PiccadillyCircus, Piccadilly)

LP $\mathcal{F}:\mathcal{R}\rightarrow\mathbb{R}$, \mathcal{F}

 \equiv

-84 edges in total

<https://www.youtube.com/watch?v=B9U8sI7TcMY>

Using memory to generate explanation

 $4.013.4.513.4.533.4.53$ $2Q$

[Explainable MANN](#page-20-0)

KE K K Ø K K E K K E K V R K K K K K K K K

Explainable inference via Memory Tracking

- ▶ La Rosa et al [\[4\]](#page-27-1) proposed a new MANN architecture based on DNC
- \blacktriangleright They augmented the DNC with a memory tracking module (Also called explanation Module)

KORK EXTERNE PROVIDE

Explainable inference via Memory Tracking

- \triangleright The memory module keeps track of every reading and writing operation
- \blacktriangleright At each time-step, it stores where the information is read/write and associate it with the input
- \triangleright With all these information, the explanation module can extract insights from memory access during the inference

Example

- \triangleright We take for example the babi stories datasets
- **Consider inputs :** $P_1 = X_1X_2X_3$ and $P_2 = X_4X_5$
- \blacktriangleright Where P_i is the *i*th sentence and X_i a word
- Suppose each X_i is stored in a cell called C_i
- If during the inference, C_2 was read 5 times, C_1 was read 2 times and C_4 1 times, then the explanation module infer that P_1 decision weight is :

$$
12.5\times(5+2)=87.5\%
$$

KORKAR KERKER SAGA

Experiments

Earl woke up early to make some coffee. (48.3%) He wanted to be alert for work that day, (47.4%) The aroma woke up all his roommates. (0%) They wanted to make coffee too. (4.2%)

E1. All of his roommates made coffee $(CORRECT)$ – E2. All of his roommates were sick of coffee.

Samantha had recently purchased a used car. (15.6%) She loved everything about the car except for the color. (30.3%) She took her car to her local paint shop. (31%) She got it painted a bright pink color. (23%)

E1. Samantha likes the color of her car now. $(CORRECT) - E2$. Samantha thinks her bus looks pretty now.

Tim didn't like school very much. (23.6%) His teacher told him he had a test on Friday. (15%) If he didn't pass this test, he could not go on the class trip. (4.5%) Tim decided to play with his kites instead of study for the test. (56.8%)

E1. Tim was unprepared and failed the test. $-$ E2. Tim aced the test and passed with flying colors. (WRONG)

Neil took a ferry to the island of Sicily. (87.2%) The wind blew his hair as he watched the waves. (0%) Soon it docked, and he stepped onto the island. (0%) It was so breathtakingly beautiful. (12.7%)

E1. Neil enjoyed Sicily (CORRECT) $-$ E2. Sicily was the worst place neil had ever been.

Thank you

Thank you

譶 Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. arXiv:1410.5401 [cs], December 2014. arXiv: 1410.5401.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis.

Hybrid computing using a neural network with dynamic external memory.

Nature, 538(7626):471–476, October 2016. Bandiera abtest: a Cg type: Nature Research Journals Number: 7626 Primary atype: Research Publisher: Nature Publishing Group Subject term: Learning algorithms;Network models Subject_term_id: learning-algorithms;network-models.

KID KA KERKER KID KO

Caglar Gulcehre, Sarath Chandar, and Yoshua Bengio. Memory Augmented Neural Networks with Wormhole Connections. arXiv:1701.08718 [cs, stat], January 2017. arXiv: 1701.08718.

晶

Biagio La Rosa, Roberto Capobianco, and Daniele Nardi. Explainable Inference on Sequential Data via Memory-Tracking.

In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, pages 2006–2013, Yokohama, Japan, July 2020. International Joint Conferences on Artificial Intelligence Organization.

量 Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler, Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, Victor Greiff, David Kreil, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. Hopfield Networks is All You Need.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

arXiv:2008.02217 [cs, stat], April 2021. arXiv: 2008.02217.

Kロトメ部トメミトメミト ミニのQC