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An Introduction to Tensor
Networks
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Tensors

M ∈ Rd1×d2

Mij ∈ R for i ∈ [d1], j ∈ [d2]
T ∈ Rd1×d2×d3

(T ijk) ∈ R for i ∈ [d1], j ∈ [d2], k ∈ [d3]
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Tensors: Multiplication with Matrices

AMB> ∈ Rm1×m2 T ×1 A×2 B×3 C ∈ Rm1×m2×m3

ex: If T ∈ Rd1×d2×d3 and A ∈ Rm1×d1 ,B ∈ Rm2×d2 ,C ∈ Rm3×d3 , then
T ×1 A×2 B×3 C ∈ Rm1×m2×m3 is defined by

(T ×1 A×2 B×3 C)i1,i2,i3 =
n1∑

k1=1

n2∑
k2=1

n3∑
k3=1

T k1k2k3Ai1k1Bi2k2Ci3k3

for all i1 ∈ [d1], i2 ∈ [m2], i3 ∈ [d3].
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Matrix product:

A Bm n p (AB)i1,i2 =
∑n

k=1 Ai1kBki2
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Inner product between tensors:

S T
d1
d2

d3

〈S,V〉 =
∑d1

i1=1
∑d2

i2=1
∑d3

i3=1 S i1i2i3T i1i2i3
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Frobenius norm of a tensor:

S S
d1
d2

d3

‖S‖2
F =

∑d1
i1=1

∑d2
i2=1

∑d3
i3=1(S i1i2i3)2
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Trace of an n × n matrix:

M1 2

n

Tr(M) =
∑n

i=1 Mii
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Tensor times matrices:

TA

B

C

m1

m2

m3

n1

n2

n3
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Weighted Automata Vs. RNNs
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Most of what I will talk about today is based on joint work with Tianyu Li
(PhD student) and Doina Precup:

Rabusseau, Guillaume, Tianyu Li, and Doina Precup. ”Connecting
weighted automata and recurrent neural networks through spectral
learning.” The 22nd International Conference on Artificial Intelligence
and Statistics. PMLR, 2019.
Li, Tianyu, Doina Precup, and Guillaume Rabusseau. ”Connecting
Weighted Automata, Tensor Networks and Recurrent Neural Networks
through Spectral Learning.” arXiv preprint arXiv:2010.10029 (2020).

Tianyu Li:
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Weighted Automata Vs. Recurrent Neural Networks

Weighted automata are ”robust” models for sequence data
Recurrent neural networks can also deal with sequence data
⊕ Remarkably expressive models, impressive results in speech and audio

recognition
	 Less tractable than WA, limited understanding of their inner working

Connections between WA and RNN:
I Can RNN learn regular languages? [Giles et al, 1992], [Avcu et al., 2018]
I Can we extract finite state machines from RNNs? [Giles et al, 1992],

[Weiss et al., 2018], [Ayache et al., 2018]
I Can we combine FSMs with WA? [Rastogi et al., 2016], [Dyer et al., 2016]
I To which extent Weighted Automata are linear RNNs?
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String Weighted Automata (WA)

Σ a finite alphabet (e.g. {a, b}), Σ∗ strings on Σ (e.g. abba), λ the
empty string.

Recall: a Deterministic Finite Automaton (DFA) recognizes a
language (subset of Σ∗).

↪→ a DFA computes a function f : Σ∗ → {>,⊥}.

Guillaume Rabusseau Tensor networks, RNNs and Weighted Automata April 14, 2021 10 / 40



String Weighted Automata (WA)

Σ a finite alphabet (e.g. {a, b}), Σ∗ strings on Σ (e.g. abba), λ the
empty string.
Recall: a Deterministic Finite Automaton (DFA) recognizes a

language (subset of Σ∗).

↪→ a DFA computes a function f : Σ∗ → {>,⊥}.

Guillaume Rabusseau Tensor networks, RNNs and Weighted Automata April 14, 2021 10 / 40



Weighted Automata: States and Weighted Transitions

slide credits: B. Balle, X. Carreras, A. Quattoni - ENMLP’14 tutorial
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String Weighted Automata (WA)

Σ a finite alphabet (e.g. {a, b}), Σ∗ strings on Σ (e.g. abba)
A WA computes a function f : Σ∗ → R

Weighted Automaton: A = (α, {Aσ}σ∈Σ,ω) where

α ∈ Rn initial weights vector
ω ∈ Rn final weights vector

Aσ ∈ Rn×n transition weights matrix for each σ ∈ Σ
A computes a function fA : Σ∗ → R defined by

fA(σ1σ2 · · ·σk) = α>Aσ1Aσ2 · · ·Aσkω

α Aσ1 Aσ2 · · · Aσk ω1 1 2 1 2 1 2 1 2 1
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2nd order RNNs

Recurrent Neural Network (RNN):

(x1, x2, x3, · · · ) 7→ (y1, y2, y3, · · · )

Vanilla RNN:

ht = g(Uxt + Vht−1), yt = g(Mht)

Second-order RNN [Giles et al., NIPS’90]:

ht = g(W ×2 xt ×3 ht−1)

→ order 2 multiplicative interactions: [ht ]i = g
(∑

j,k W ijk [xt ]j [ht−1]k
)

.
↪→ (side note) 2nd order RNN subsume vanilla RNN
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Weighted Automata and Recurrent Neural Networks

The hidden state of a second-order RNN is computed by

ht = g(W ×2 xt ×3 ht−1)

h0 W

x1

W

x2

W

x3

g g g

The computation of a weighted automaton is very similar!

α Aσ1 Aσ2 Aσ3 ω
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Weighted Automata and Recurrent Neural Networks

The hidden state of a second-order RNN is computed by

ht = g(W ×2 xt ×3 ht−1)

h0 W

x1

W

x2

W

x3

g g g

The computation of a weighted automaton is very similar!

α A

eσ1

A

eσ2

A

eσ3

ω

(where A ∈ Rn×Σ×n defined by A:,σ,: = Aσ)
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WAs ≡ linear 2-RNNs

Theorem
WAs are expressively equivalent to second-order linear RNNs for
computing functions over sequences of discrete symbols.

But 2-RNNs can compute functions over sequences of continuous
vectors (e.g., word embeddings), what about WAs?

↪→ We can extend the definitions of WAs to continuous vectors!
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Continuous WA / linear 2-RNN

Definition
A continuous WA is a tuple A = (α,A,ω) where

α ∈ Rn initial weights vector
ω ∈ Rn final weights vector

A ∈ Rn×d×n is the transition tensor.

A computes a function fA : (Rd )∗ → R defined by

αf (x1, x2, · · · , xk) = A

x1

A

x2

· · · A

xk

ω
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WAs ≡ linear 2-RNNs

Theorem
WAs are expressively equivalent to second-order linear RNNs (linear
2-RNNs) for computing functions over sequences of discrete symbols.

But 2-RNNs can compute functions over sequences of continuous
vectors (e.g., word embeddings), what about WAs?

↪→ We can extend the definitions of WAs to continuous vectors!

Can we learn linear 2-RNNs from data?
? Over sequences of discrete symbols?
↪→ Yes: spectral learning of WA
? Over sequences of continuous vectors?
↪→ Yes: technical contribution of [AISTATS’19]
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Future directions

Extension to tree models:
I Linear Recursive Tensor Neural Networks (Socher et al., 2013) are

Weighted Tree Automata!
I Continuous extension of WTA and spectral learning algorithm.

What do linear counterparts of neural sequential models (LSTMs,
bi-directionnal RNNs, etc.) correspond to?
Spectral initialization of RNNs (ongoing work of Maude Lizaire).
More accurate map of equivalences between WA and RNNs (e.g.
Multiplicative interaction RNNs are special case of 2nd order RNNs)...
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Tensor Network Models for
Sequences
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Tensor Train / Matrix Product State (MPS) decomposition

Tensor Train decomposition [Oseledets, 2011]:

G1 G2 G3 G4T
d1 d2 d3 d4

=
d1 d2 d3 d4

R1 R2 R3

⇒ d1R1 + R1d2R2 + R2d2R3 + R3d4 parameters instead of d1d2d3d4.
If the ranks are all the same (R1 = R2 = · · · = R), can represent a
vector of size 2n with O

(
nR2) parameters!

We can also efficiently perform operations on TT tensors:
I Inner product, sum, component-wise product, ... all in time linear in n

for vectors of size dn.
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Tensor Train / Matrix Product States
G1 G2 G3 G4W

d1 d2 d3 d4

=
d1 d2 d3 d4

R1 R2 R3

We can parameterize linear classification models with MPS
[Stoudenmire & Schwab, 2016]:

f (X ) = sign(〈W ,X 〉) = sign

 G1 G2 G3 G4
R R R

X



We can also model probability distributions with MPS [Han et al.,
2018]:

P(X ) =
G1 G2 G3 G4

R R R

X

or P(X ) =

 G1 G2 G3 G4
R R R

X


2

Guillaume Rabusseau Tensor networks, RNNs and Weighted Automata April 14, 2021 23 / 40



Tensor Train / Matrix Product States
G1 G2 G3 G4W

d1 d2 d3 d4

=
d1 d2 d3 d4

R1 R2 R3

We can parameterize linear classification models with MPS
[Stoudenmire & Schwab, 2016]:

f (X ) = sign(〈W ,X 〉) = sign

 G1 G2 G3 G4
R R R

X


We can also model probability distributions with MPS [Han et al.,
2018]:

P(X ) =
G1 G2 G3 G4

R R R

X

or P(X ) =

 G1 G2 G3 G4
R R R

X


2

Guillaume Rabusseau Tensor networks, RNNs and Weighted Automata April 14, 2021 23 / 40



Tensor Train / Matrix Product States
G1 G2 G3 G4W

d1 d2 d3 d4

=
d1 d2 d3 d4

R1 R2 R3

We can parameterize linear classification models with MPS
[Stoudenmire & Schwab, 2016]:

f (X ) = sign(〈W ,X 〉) = sign

 G1 G2 G3 G4
R R R

X


We can also model probability distributions with MPS [Han et al.,
2018]:

P(X ) =
G1 G2 G3 G4

R R R

X

or P(X ) =

 G1 G2 G3 G4
R R R

X


2

Guillaume Rabusseau Tensor networks, RNNs and Weighted Automata April 14, 2021 23 / 40



MPS for sequence modeling

We can also use MPS to model functions and distributions over fixed
length sequences:

P(x1, x2, x3, x4) =
G1 G2 G3 G4

R R R

x1 x2 x3 x4

or P(x1, x2, x3, x4) =
(

G1 G2 G3 G4
R R R

x1 x2 x3 x4

)2

↪→ How to model distributions over variable length sequences?
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Uniform MPS

uniform MPS (uMPS) decomposition ≡ MPS with same core at
each site:

A A A Aα ωW
d d d d

=
d d d d

R R RR R

With uMPS, we can model functions and distributions over variable
length sequences:

P(x1, x2, x3, x4) =
Aα ωA A AR RR R R

x1 x2 x3 x4

d d d d ,P(x1, x2) =
Aα A ωR RR

x1 x2

d d ,

P(x1, x2, x3, x4, x5, x6) =
A A A A A Aα ωR RR R R R R

x1 x2 x3 x4 x5 x6

d d d d d d , · · ·

↪→ Nothing else than the continuous WA we defined previously!

Guillaume Rabusseau Tensor networks, RNNs and Weighted Automata April 14, 2021 25 / 40



Uniform MPS

uniform MPS (uMPS) decomposition ≡ MPS with same core at
each site:

A A A Aα ωW
d d d d

=
d d d d

R R RR R

With uMPS, we can model functions and distributions over variable
length sequences:

P(x1, x2, x3, x4) =
Aα ωA A AR RR R R

x1 x2 x3 x4

d d d d ,P(x1, x2) =
Aα A ωR RR

x1 x2

d d ,

P(x1, x2, x3, x4, x5, x6) =
A A A A A Aα ωR RR R R R R

x1 x2 x3 x4 x5 x6

d d d d d d , · · ·

↪→ Nothing else than the continuous WA we defined previously!

Guillaume Rabusseau Tensor networks, RNNs and Weighted Automata April 14, 2021 25 / 40



Uniform MPS

uniform MPS (uMPS) decomposition ≡ MPS with same core at
each site:

A A A Aα ωW
d d d d

=
d d d d

R R RR R

With uMPS, we can model functions and distributions over variable
length sequences:

P(x1, x2, x3, x4) =
Aα ωA A AR RR R R

x1 x2 x3 x4

d d d d ,P(x1, x2) =
Aα A ωR RR

x1 x2

d d ,

P(x1, x2, x3, x4, x5, x6) =
A A A A A Aα ωR RR R R R R

x1 x2 x3 x4 x5 x6

d d d d d d , · · ·

↪→ Nothing else than the continuous WA we defined previously!

Guillaume Rabusseau Tensor networks, RNNs and Weighted Automata April 14, 2021 25 / 40



Connections between uMPS and other models
A uMPS is given by a tuple (α ∈ Rn,A ∈ Rn×d×n,ω ∈ Rn) and
maps any sequence of vectors x1, · · · , xk ∈ Rd to a scalar:

f (x1, x2, · · · , xk) =
A A · · · Aα ωn nn n n

x1 x2 xk

d d d

If the inputs are one-hot encoding, uMPS ≡ Weighted Automata
(generalization of HMMs)

I ↪→ If the probability of a sequence is f (x1, x2, · · · , xk)2 ≡ Quadratic
weighted automata (Bailly, 2011) / MPS from quantum physics

Linear second order RNNs ≡ uMPS
For a thorough discussion of connections between uMPS, stochastic
processes and automata, see
Srinivasan, S., Adhikary, S., Miller, J., Rabusseau, G. and Boots, B.

Quantum Tensor Networks, Stochastic Processes, and Weighted Automata (AISTATS 2021).
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Future Directions

Versatile sampling algorithm:
I We can exactly sample from a uMPS/WFA distribution projected onto

the support of a regular language / context free grammar.
Jacob Miller, Guillaume Rabusseau, and John Terilla. Tensor Networks for Language Modeling.

arXiv preprint arXiv:2003.01039 (AISTATS 2021).

Scale up learning to very large state spaces (work of Jacob Miller).
Training uMPS/WFA with word embeddings for language modeling
(work of Jacob Miller).
Learning dynamics in uMPS/WFA trained by gradient based method
could provide theoretical insights on training RNN.
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A Tensor Network View of the
Spectral Learning Algorithm
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Hankel matrix
We consider the case where inputs are sequences of discrete symbols:

I Σ a finite alphabet of size d (e.g. {a, b})
I Σ∗ strings on Σ (e.g. abba)
I A uMPS computes a function f : Σ∗ → R:

f (σ1 · · ·σk) =
A A · · · Aα ω

n nn n n

σ1 σ2 σk

d d d

Hf ∈ RΣ∗×Σ∗ : Hankel matrix of f : Σ∗ → R

I Definition: prefix p, suffix s ⇒ (Hf )p,s = f (ps)



a b aa ab ...

a f (aa) f (ab) . . . . . . . . .
b f (ba) f (bb) . . . . . . . . .
aa f (aaa) f (aab) . . . . . . . . .

ab
...

...
...

...
...

...
...

...
...

... . . .
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Spectral Learning of uMPS

Hf ∈ RΣ∗×Σ∗ : Hankel matrix of f : Σ∗ → R

Definition: prefix p, suffix s ⇒ (Hf )p,s = f (ps)

Fundamental theorem [Carlyle and Paz, 1971; Fliess 1974]:

rank(Hf ) <∞⇐⇒ f can be computed by a uMPS

↪→ Proof is constructive! From a low rank factorization of Hf we can
recover a uMPS computing f ...
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Spectral Learning of uMPS (in a nutshell)
1. Choose a set of prefixes and suffixes, P,S ⊂ Σ∗.

2. Estimate the Hankel sub-blocks hP ∈ RP , hS ∈ RS , HP,S ∈ RP×S ,
HP,Σ,S ∈ RP×Σ×S defined by
(hP)u = f (u), (hS)v = f (v), (HP,S)u,v = f (uv) and (HP,Σ,S)u,σ,v = f (uσv)

3. Recover uMPS parameters (α,A,ω):
HP,S
P S '

P
P n

S
S

α
n =

hS
S

S†

† n
ω

n =
P†

†n P
hP

A nn =
P†

†n P
HP,Σ,S

S
ΣΣ

S†

† n

→ Efficient and consistent learning algorithms for uMPS/weighted
automata [Hsu et al., 2009; Bailly et al. 2009; Balle et al., 2014, ...].
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Spectral Learning: when does it work?
Theorem (Exact case)
If the set of prefixes and suffixes P,S ⊂ Σ∗ are such that

rank(HP,S) = rank(Hf ) <∞

then the spectral learning algorithm returns a uMPS computing f .

Suppose f is computed by a uMPS. By a continuity argument, if we are
given noisy estimates
ĤP,S = HP,S + ξP,S , ĤP,Σ,S = ĤP,Σ,S + ξP,Σ,S , . . . we have

lim
‖ξP,S‖→0, ‖ξP,Σ,S‖→0

f̂ = f

where f̂ is the estimator returned by the spectral method.
↪→ When f is a probability distribution, we get an unbiased and

consistent estimator! [c.f. work of B. Balle]
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A closer look at the Hankel matrix of a uMPS

Let f : Σ∗ → R be the function computed by a uMPS (α,A,ω).
Define the `th order Hankel tensor H(`) ∈ RΣ×Σ×···×Σ by

H(`)
σ1,σ2,··· ,σ` = f (σ1σ2 · · ·σ`)

=
A A · · · Aα ω

n nn n n

σ1 σ2 σk

d d d (1)

for all σ1, · · ·σ` ∈ Σ
For each `, the tensor H(`) has low uniform MPS rank:

H(`)

d d · · · d =
A A · · · Aα ω

n nn n n

d d d (2)
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A closer look at the Hankel matrix of a uMPS

For each `, the tensor H(`) (defined by H(`)
σ1,σ2,··· ,σ` = f (σ1σ2 · · ·σ`)) has low

uniform MPS rank:

H(`)

d d · · · d =
A A · · · Aα ω

n nn n n

d d d (3)

It follows that the Hankel matrix Hf ∈ RΣ∗×Σ∗ can be decomposed in
sub-blocks of low uMPS rank:

Hf =



a b aa ab ...

a f (aa) f (ab) . . . . . . . . .
b f (ba) f (bb) . . . . . . . . .
aa f (aaa) f (aab) . . . . . . . . .

ab
...

...
...

...
...

...
...

...
...

... . . .


=

a b aa ab ba bb aaa aab . . .

a
H(2)

Σ×Σ H(3)
Σ×Σ2 H(4)

Σ×Σ3
. . .

b
aa

H(3)
Σ2×Σ H(4)

Σ2×Σ2 H(5)
Σ2×Σ3

. . .
ab
ba
bb
aaa

H(4)
Σ3×Σ H(5)

Σ3×Σ2 H(6)
Σ3×Σ3

. . .
aab

...
...

...
...

Guillaume Rabusseau Tensor networks, RNNs and Weighted Automata April 14, 2021 35 / 40



A closer look at the Hankel matrix of a uMPS

For each `, the tensor H(`) (defined by H(`)
σ1,σ2,··· ,σ` = f (σ1σ2 · · ·σ`)) has low

uniform MPS rank:

H(`)

d d · · · d =
A A · · · Aα ω

n nn n n

d d d (3)

It follows that the Hankel matrix Hf ∈ RΣ∗×Σ∗ can be decomposed in
sub-blocks of low uMPS rank:

Hf =



a b aa ab ...

a f (aa) f (ab) . . . . . . . . .
b f (ba) f (bb) . . . . . . . . .
aa f (aaa) f (aab) . . . . . . . . .

ab
...

...
...

...
...

...
...

...
...

... . . .



=

a b aa ab ba bb aaa aab . . .

a
H(2)

Σ×Σ H(3)
Σ×Σ2 H(4)

Σ×Σ3
. . .

b
aa

H(3)
Σ2×Σ H(4)

Σ2×Σ2 H(5)
Σ2×Σ3

. . .
ab
ba
bb
aaa

H(4)
Σ3×Σ H(5)

Σ3×Σ2 H(6)
Σ3×Σ3

. . .
aab

...
...

...
...

Guillaume Rabusseau Tensor networks, RNNs and Weighted Automata April 14, 2021 35 / 40



A closer look at the Hankel matrix of a uMPS

For each `, the tensor H(`) (defined by H(`)
σ1,σ2,··· ,σ` = f (σ1σ2 · · ·σ`)) has low

uniform MPS rank:

H(`)

d d · · · d =
A A · · · Aα ω

n nn n n

d d d (3)

It follows that the Hankel matrix Hf ∈ RΣ∗×Σ∗ can be decomposed in
sub-blocks of low uMPS rank:

Hf =



a b aa ab ...

a f (aa) f (ab) . . . . . . . . .
b f (ba) f (bb) . . . . . . . . .
aa f (aaa) f (aab) . . . . . . . . .

ab
...

...
...

...
...

...
...

...
...

... . . .


=

a b aa ab ba bb aaa aab . . .

a
H(2)

Σ×Σ H(3)
Σ×Σ2 H(4)

Σ×Σ3
. . .

b
aa

H(3)
Σ2×Σ H(4)

Σ2×Σ2 H(5)
Σ2×Σ3

. . .
ab
ba
bb
aaa

H(4)
Σ3×Σ H(5)

Σ3×Σ2 H(6)
Σ3×Σ3

. . .
aab

...
...

...
...
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Back to the spectral learning algorithm

In the spectral algorithm, we need to estimate
(hP)u = f (u), (hS)v = f (v), (HP,S)u,v = f (uv) and (HP,Σ,S)u,σ,v = f (uσv)
for some sets of prefixes and suffixes P,S ⊂ Σ∗.

If we choose P = S = Σ` we have

hP = hS = H(`)
Σ` , HP,S = H(2`)

Σ`×Σ` and (HP,Σ,S) = H(2`+1)
Σ`×Σ×Σ`

↪→ All the quantities we need to estimate are matricization of low uMPS
rank tensors!
This leads to an efficient learning algorithm:

I Estimate H(`),H(2`),H(2`+1) directly in the MPS/TT format
I Use the spectral algorithm to convert the MPS decomposition into a

uniform MPS model.
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Spectral Learning ≡ Conversion from MPS to uMPS

Let f : Σ∗ → R be a function for which we have access to an MPS
decomposition of the Hankel tensors H(`),H(2`),H(2`+1).
→ f can be a probability distribution, or the wave function of a quantum system.

Spectral learning algorithm ≡ efficient way to recover a uMPS
computing f from the 3 Hankel tensors

↪→ From H(`),H(2`),H(2`+1), we can compute the value of f on
sequences of arbitrary length!
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Input: H(`) =
A1 A2

· · ·
· · · Al−1 Al

, H(2`) =
B1 B2

· · ·
· · · B2l−1 B2l

, H(2`+1) =
C1 C2

· · ·
· · · C2l C2l+1

Output: uMPS (α,A,ω) computing f

1. Left-orthonormalisation of B1, · · · ,B` (first half of H(2`))
B1 B2

· · ·
· · · Bl−1 Bl

=
U1 U2

· · ·
· · · Ul−1 Ul Dl Vl

2. Right-orthonormalisation of B`+1, · · · ,B2` (second half of H(2`))
Bl+1 Bl+2

· · ·
· · · B2l−1 B2l

=
Ul+1 Dl+1 Vl+1 Vl+2

· · ·
· · · V2l−1 V2l

3. Computation of the uMPS parameters:

α =
A1 A2

· · ·
· · · Al−1 Al

Ul+1 D−1
l+1 Vl+1 Vl

· · ·
· · · V2l−1 V2l

ω =
A1 A2

· · ·
· · · Al−1 Al

U1 U2

· · ·
· · · Ul−1 Ul D−1

l Vl

A =
C1 C2

· · ·
· · · Cl−1 Cl Cl+1

· · ·
· · · C2l C2l+1

U1 U2

· · ·
· · · Ul D−1

l Vl Ul+1 D−1
l+1 Vl+1

· · ·
· · · V2l−1 V2l
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Spectral Learning with Tensor Networks

Recap:
I More structure than matrix rank in the Hankel matrix.
I When P = S = Σ`, the spectral learning algorithm can be performed

efficiently in the MPS/TT format.
↪→ Time complexity is reduced from O

(
n|Σ|2` + n2|Σ|`+1) to O

(
n3`|Σ|

)
.

Future directions:
I Spectral learning of continuous WA/uMPS for RL (work of Tianyu Li)
I Similar connections and algorithms can be derived for models on trees
I What about graphs? (e.g. potential connections between TN and

GNN)
I Lots of connections between quantum TN, probabilistic models, formal

languages, machine learning, etc. to explore!
(e.g., using density matrices to model languages (see work of
Tai-Danae Bradley)
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That’s all, folks!

Thanks for listening!
Questions?
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