RING: Regular expressions INference and Generation

TAUDoS, June 16th, 2022

Maxime Raynal (LIG/MRIM & Nokia Bell Labs)

Marc-Olivier Buob (Nokia Bell Labs) Georges Quénot (LIG/MRIM)

Agenda

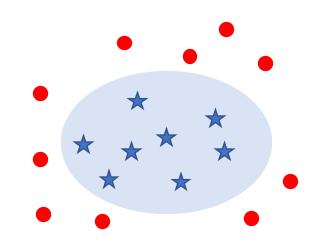
Introduction & state of the art
RING

 Overview
 Loss function
 Dataset generation
 Model architecture

Future works & conclusion

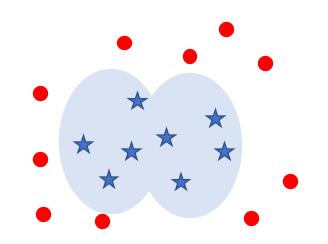
Part 1: introduction & state of the art

- Grammar inference problem:
 - Input: set of positive and negative examples
 - Output: inferred language
- Problem:
 - In general, an infinity of solutions
 - Two trivial solutions:
 - The PTA (prefix tree acceptor) of positive examples
 - The PTA's complement of negative examples



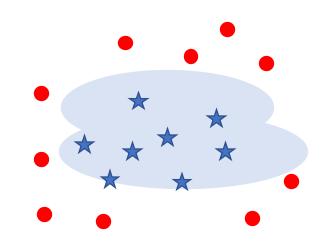
- ★ Positive examples
- Negative examples

- Grammar inference problem:
 - Input: set of positive and negative examples
 - Output: inferred language
- Problem:
 - In general, an infinity of solutions
 - Two trivial solutions:
 - The PTA (prefix tree acceptor) of positive examples
 - The PTA's complement of negative examples



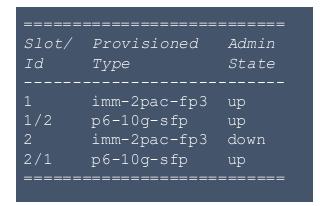
- ★ Positive examples
- Negative examples

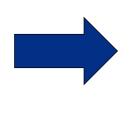
- Grammar inference problem:
 - Input: set of positive and negative examples
 - Output: inferred language
- Problem:
 - In general, an infinity of solutions
 - Two trivial solutions:
 - The PTA (prefix tree acceptor) of positive examples
 - The PTA's complement of negative examples



Negative examples

- Our goal:
 - Model and train <u>one</u> RNN to infer a regular expression from positive examples
 - <u>Without</u> negative examples
- Our use case: log parsing

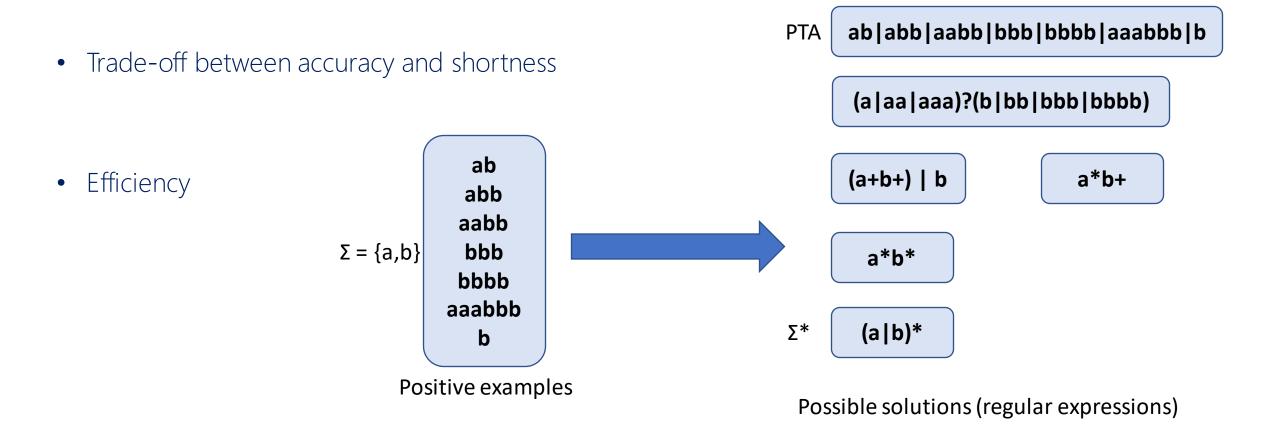




Slot / Id	Provisioned type	Admin state
1	imm-2pac-fp3	up
1/2	p6-10g-sfp	up
2	imm-2pac-fp3	down
2/1	p6-10g-sfp	ир

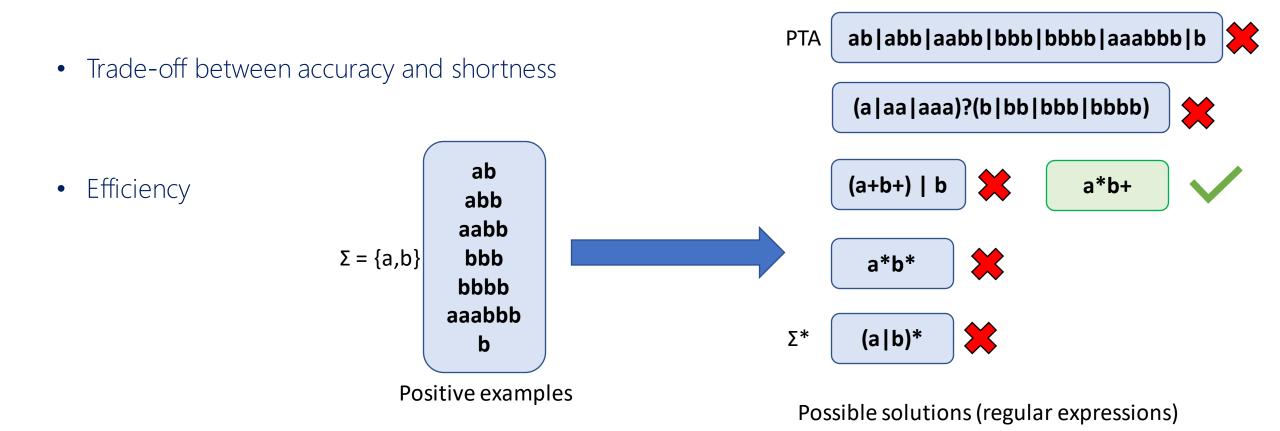
Challenges

• No negative examples



Challenges

• No negative examples



State of the art: Gold

- Gold defined a theoretical framework to regular language induction (identification in the limit)
- Gold presented an algorithm to induce an automaton from examples

- Problems:
 - Without negative examples, Gold returns results that are not interesting in practice
 - Works with automata, not with regular expressions

State of the art: inducing an automaton with a RNN

- Inducing a DFA with a RNN has been explored in the 1990s
- Idea:
 - Train a RNN to act as an automaton
 - Use this RNN to extract an automaton
- Problems:
 - Need to train a new RNN for each language we want to induce
 - Unadapted to solve our problem

State of the art: machine learning methods

- Several methods in the literature, mostly using a metaheuristic approach
- Several working directly with regular expressions
- Problems:
 - Do not scale
 - Usually require negative examples

Part 2: RING

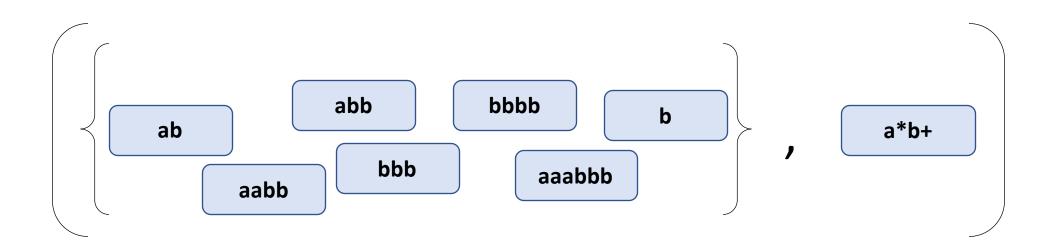
2.1 Overview2.2 Loss function2.3 Dataset generation2.4 Model architecture

RING overview

- Novelties
 - "One to infer them all"
 - No negative examples
- Controlled and automated data generation
 - Uncommon in the DL field -> explainability
 - Automated result evaluation
- Our model architecture uses recent DL methods

Training samples generation

- We can easily generate training samples
 - Sample = regular expression and a set of positive examples

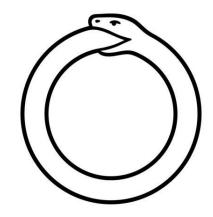


Training samples generation

- We can easily generate training samples
 - Sample = regular expression and a set of positive examples
- Advantages:
 - Automated generation
 - Controlled process
 - Allows to test different training strategies
 - Gives better insight on hyperparameters influence

Training samples generation

- We can easily generate training samples
 - Sample = regular expression and a set of positive examples
- Advantages:
 - Automated generation
 - Controlled process
 - Allows to test different training strategies
 - Gives better insight on hyperparameters influence
- Training samples generation strategy:
 - Generate a regular expression from examples
 - Generate examples from a regular expression



- Challenges
 - We would like to pick a random regular expression "uniformly" but ...
 - Infinite space to pick in
 - Regular expression are ambiguous by design

- Challenges
 - We would like to pick a random regular expression "uniformly" but ...
 - Infinite space to pick in
 - Regular expression are ambiguous by design
- Possible approaches:
 - Random DFA generation: DFA-to-RE conversions (Arden, state suppression) lead to long regular expressions

- Challenges
 - We would like to pick a random regular expression "uniformly" but ...
 - Infinite space to pick in
 - Regular expression are ambiguous by design
- Possible approaches:
 - Random DFA generation: DFA-to-RE conversions (Arden, state suppression) lead to long regular expressions
 - Random AST generation with given size: difficult to generate without bias

- Challenges
 - We would like to pick a random regular expression "uniformly" but ...
 - Infinite space to pick in
 - Regular expression are ambiguous by design
- Possible approaches:
 - Random DFA generation: DFA-to-RE conversions (Arden, state suppression) lead to long regular expressions
 - Random AST generation with given size: difficult to generate without bias
 - Solution:
 - Generate a random string and reject it if it is not a valid regular expression
 - Enable regular expressions simplifications (e.g., a** becomes a*)

Generating positive examples from a regular expression

- Challenges
 - Difficult to pick positive examples smaller than given size uniformly from a regular expression
 - Due to intrinsic ambiguities in regular expressions

- Possible approaches:
 - Random walk on a DFA or on an AST: biased
 - Solution: Combinatorial generation of positive examples (~enumeration)

Quality function

- Challenges
 - Multiple feasible solutions
 - No unique, canonical way to define what is the best regular expression
 - Several criteria

- Criteria:
 - A solution must recognize all examples (feasibility)
 - A solution must be short (shortness)
 - A solution must be specific (accuracy)

Quality function

- Shortness:
 - Number of nodes in the corresponding AST
- Accuracy:
 - *Density* of the language represented by the RE
 - Intuition: partition a language L by word length, $L = \{L_0, L_1, L_2,\}$
 - Each of these subsets is finite
 - In real use-cases, only the first ones are interesting for us
- Density formula
 - Conserves inclusion relationship
 - Characterizes how big a language is

$$\rho(r) = \sum_{n \in N^*} \frac{1}{2^{n-1}} \cdot \frac{|\mathcal{L}(r)_n|}{|\Sigma|^n}$$

Quality function

- Multiple criteria
- Optimize Shortness |r| and density rho(r)

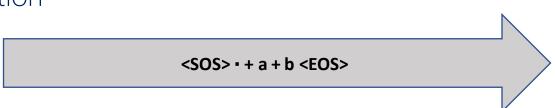
$$\operatorname{Loss}(r) = |r|^{\alpha} \cdot \rho(r)^{\beta}$$

• Where α and β are positive hyperparameters

RING model architecture

- Seq2seq: RNNs rule the field
- *Input*: sequence of positive examples
 - Using a metacharacter to split examples
 - One-hot encoding

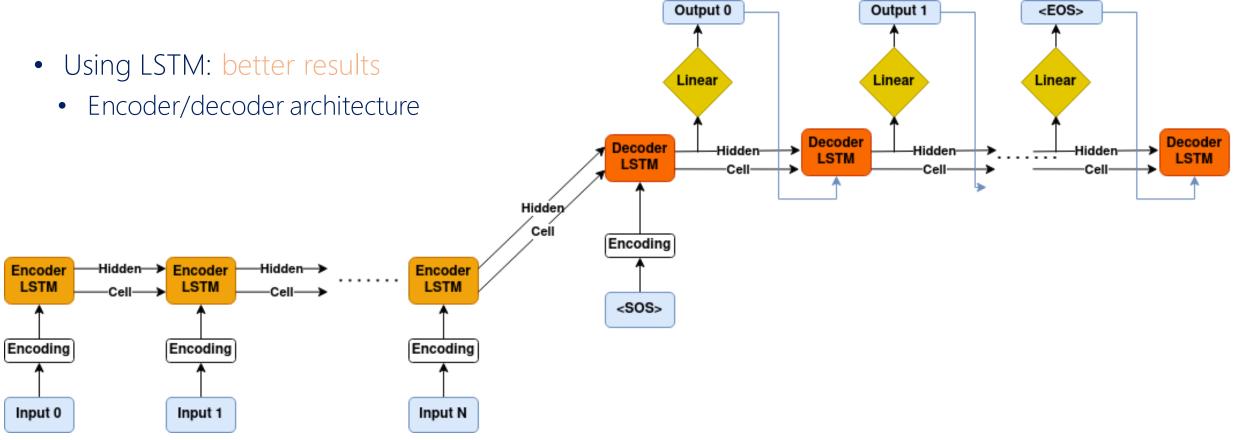
- Usual set of operators: + | * ?
- One hot encoding



<SOS> a b b \$ a b \$ a a b <EOS>

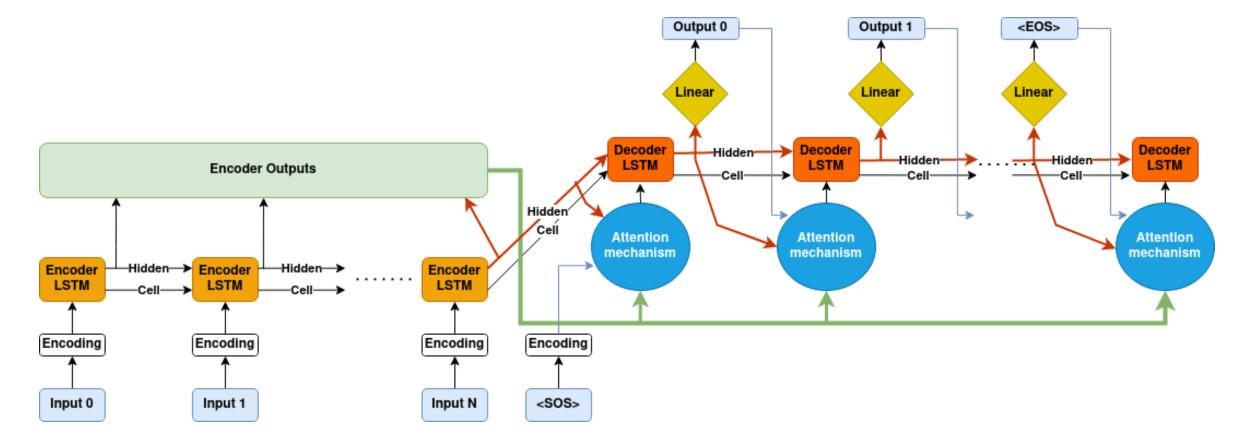
RING model architecture

- Using simple RNNs: poor results
 - Lack of long-term memory

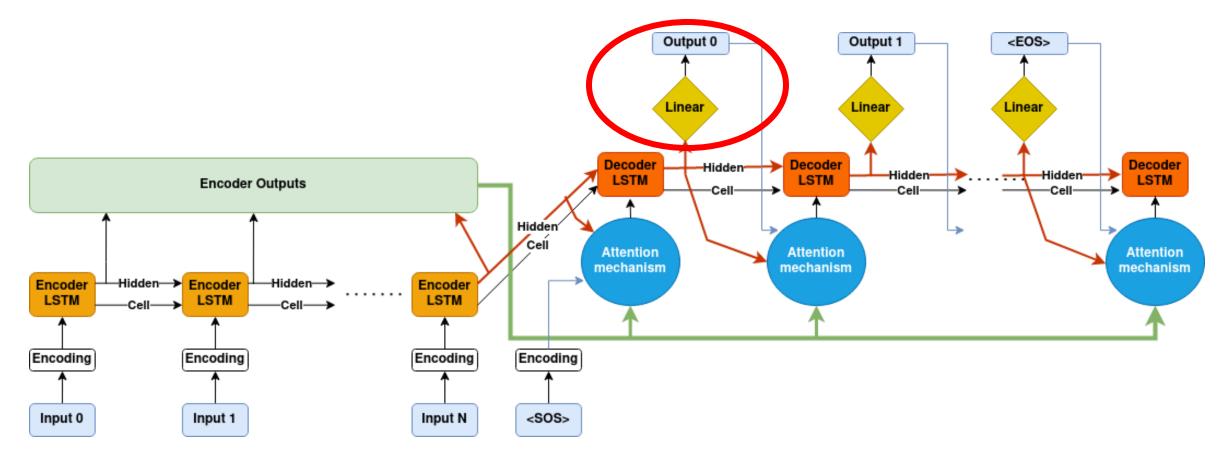


Improvement 1: attention mechanism

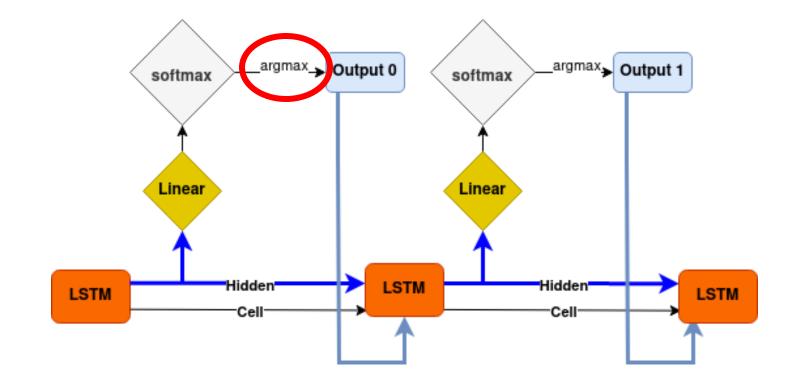
• Allows the decoder to use all encoders outputs to improve the output quality



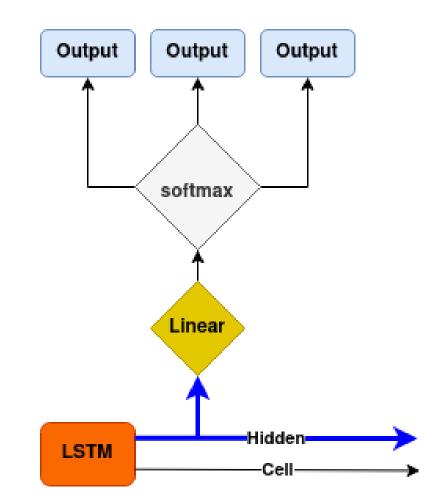
• Allows to use the entire network as a function to guide a search algorithm



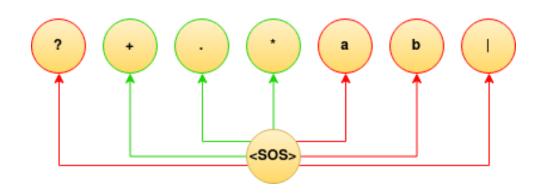
• Without BSD, we fetch the best character at each step (greedy search)



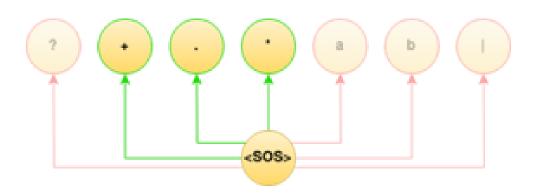
• With BSD, we fetch the **B** best character at each step (where **B** is the beam width)



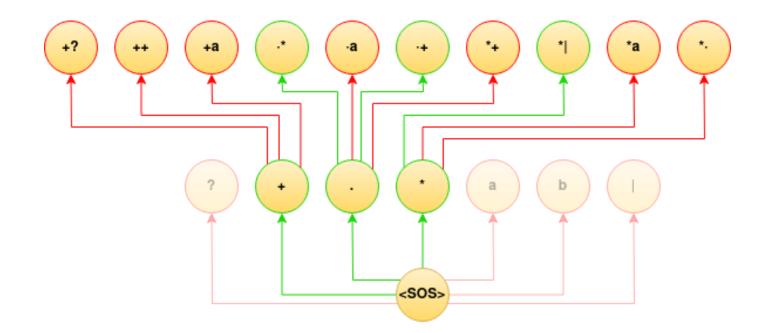
- With BSD, we perform a beam search over the output of the network
- Candidate sequences are weighted by the product of probabilities of each character



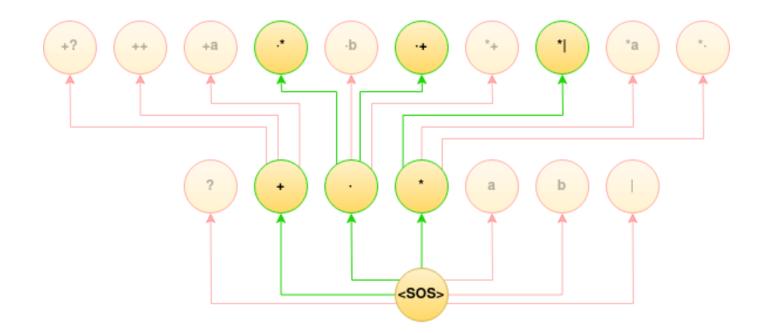
- With BSD, we perform a beam search over the output of the network
- Candidate sequences are weighted by the product of probabilities of each character



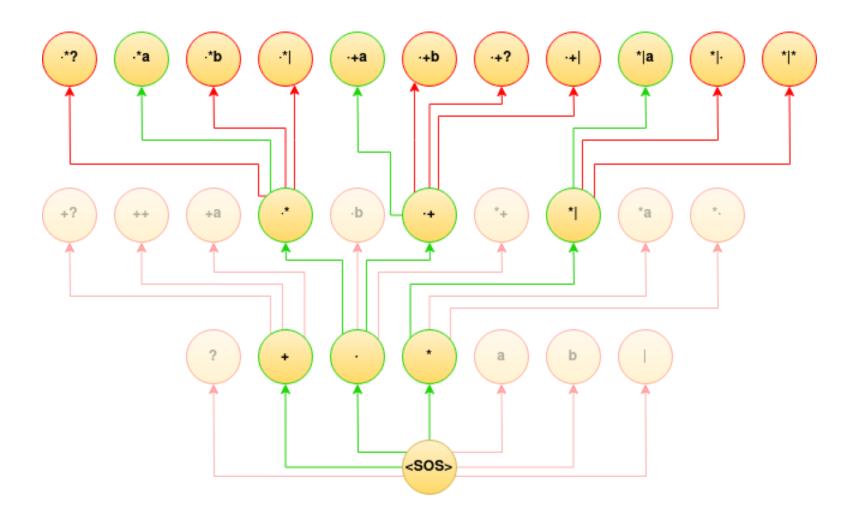
- With BSD, we perform a beam search over the output of the network
- Candidate sequences are weighted by the product of probabilities of each character



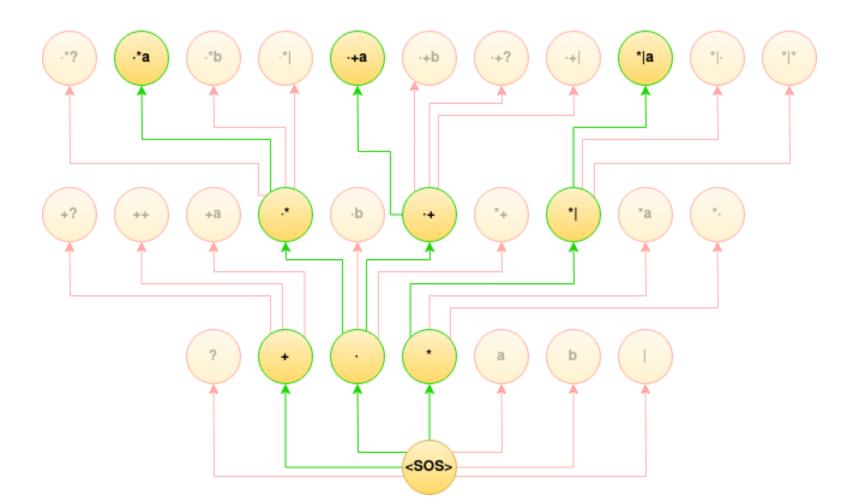
- With BSD, we perform a beam search over the output of the network
- Candidate sequences are weighted by the product of probabilities of each character



- With BSD, we perform a beam search over the output of the network
- Candidate sequences are weighted by the product of probabilities of each character

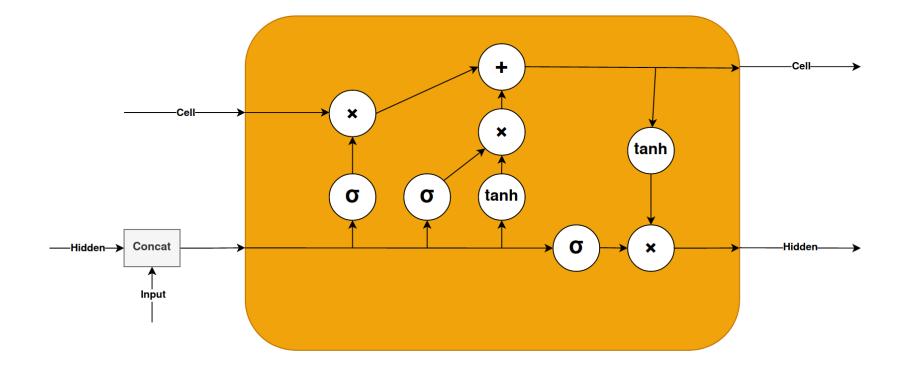


- With BSD, we perform a beam search over the output of the network
- Candidate sequences are weighted by the product of probabilities of each character

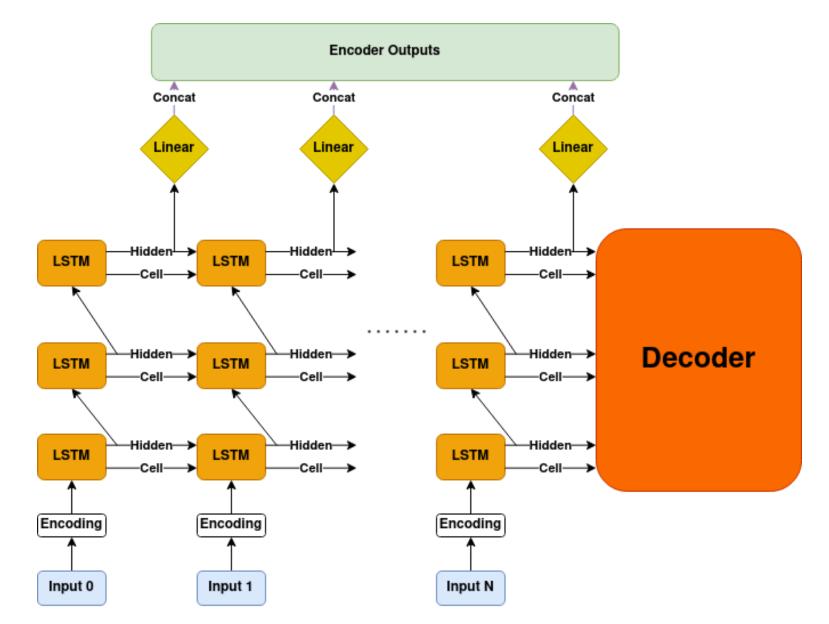


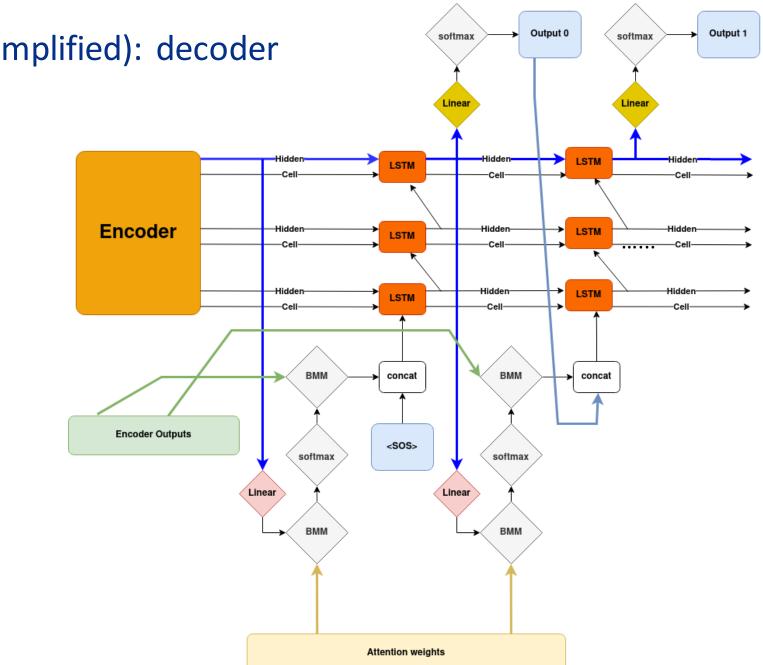
- Advantages:
 - Significant improvement of results quality
 - Possibility to include our home-made heuristic to guide the search
- Drawbacks:
 - Requires **B** time more computations

Final architecture (simplified): LSTM



Final architecture (simplified): encoder





Final architecture (simplified): decoder

Part 3: conclusion & future works

Conclusion

- A new approach to the grammatical induction problem
- Pros:
 - One to infer them all
 - No negative examples required
 - Once trained, very quick to infer a regular expression
 - Insights for RNN explainability and training methods
- Limitations:
 - Training takes time and energy
 - Only infers "short" regular expressions (~15 characters)

Future works

- Improving results:
 - Shuffle examples at the batch level to improve results
 - Use multiple decoders (prefix, infix, suffix) to improve results
 - Trim the BSD tree to improve results
 - Handle examples at the pattern level
- Explainability:
 - Study the influence of learning strategy to offer insight on RNN inner mechanisms.

